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This dissertation investigates the plausibility of computing Assessment 

Engineering cognitive task model derived difficulty parameters through careful 

engineering design, and to compare the task model derived difficulty with empirical 

Rasch model ‘b’ parameter estimates. In addition, this research seeks to examine whether 

cognitive task model derived difficulty can replace the Rasch Model ‘b’ parameter 

estimates for scoring examinees.   The study uses real data constituting four assessments 

from a large-scale testing company. The results of the analysis indicated strong 

correlations between the task model and the empirical difficulty parameter estimates. 

While most of the empirical items satisfied the standard requirements of fit, there were 

several misfitting task model items, however, the task model was able to provide 

adequate fit for most of the items.  Furthermore the proficiency scores for the empirical 

and the task model matched each other quite well for all of the assessments, showing no 

differences among the empirical and task model scores. An examination of the standard 

error statistics showed no differences between the empirical Rasch model and the 

cognitive task models.  Assessment engineering is a new field, therefore very little 

research exists on comparing assessment engineering cognitive task model derived 

difficulties to empirical Rasch model parameter estimates.  Moreover, the effects of 

cognitive task model estimate on proficiency scores has not been investigated.                                           
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This study showed that through assessment engineering cognitive task modelling 

design process, it is possible to generate the item difficulty parameters a priori, without 

the use of any complex data hungry statistical models.  For large scale testing companies, 

this will significantly reduce cost for pilot testing and make available hundreds of items 

that operate in a psychometrically similar manner.  This design process produces 

difficulty parameters that operate in a similar manner to the statistical difficulty 

parameters computed in traditional ways using the Rasch model.   
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CHAPTER I 

INTRODUCTION 
 
 

Background of the Problem 

 The educational landscape across the United States continues to go through 

radical, unprecedented changes, geared towards improving the machinery and 

methodologies through which students learn.   A paradigm shift in assessment practices 

must out of necessity be fostered, adapted and implemented, to accommodate modern 

advances in cognition, measurement and computer technology, as new integrated modern 

approaches that have the potential of creating high quality assessments, that are more 

useful and valid indicators of what students have learned are replacing isolated outmoded 

methods (Chudowsky & Pelligrino, 2010).   

Most notably among these developments is assessment engineering Luecht, 

(2006b, 2007a, 2008b).  It is an approach that can potentially guide and greatly enhance 

assessment practices and capable of meeting the growing demand for high quality test 

items, with sufficient psychometric properties.  As Bennett (2013) noted, that in order for 

meaningful changes to occur in education, there must also be comparative accelerated 

changes in educational assessment, otherwise they will increasingly work against each 

other.   

Gierl & Leighton, (2010) define assessment engineering as: “An innovative 

approach to measurement where engineering- based principles is used to direct the design 
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and development as well as the analysis, scoring, and reporting of assessment results”.  

(p. 3). There are four fundamental processes that undergird assessment engineering.  

They are: (a) construct mapping and evidence modeling; (b) task modeling; (c) template 

design and validation; and (d) psychometric calibration and scaling (Luecht, 2012; 

Luecht, Dallas & Steed, 2010). 

 

 

 

Figure 1.1   A Representation of the Assessment Engineering System 

 
 As depicted on the left of Figure 1.1, a construct map represents an ordered list of 

proficiency claims.  It specifies the types of performance-based interpretations that are to 

be made at different levels of the construct, with higher-level proficiency claims 
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presuming that the lower-level proficiencies have been mastered (Luecht, 2007c, 2008, 

2013).  Located in the middle of Figure 1 are the empirically driven evidence models and 

cognitive task models.  The cognitive task models represent skills and/or knowledge-

based performance tasks that provide direct evidence about the claims. They are 

developed at specific levels of each construct, and replace traditional test blueprints and 

related specifications (Luecht, 2009; Luecht, Burke & Devore, 2009).  Each “X” on 

Figure 1 is representative of a separate task model. The density of task models at different 

locations of the construct is directly proportional to the psychometric test information 

needs across the various levels of the construct (Luecht, 2013).   Task templates are 

located on the far right of Figure 1.1.  Each template is capable of producing large 

number of items, which according to Luecht, (2013), ‘Share exactly the same cognitive 

task complexity specifications and perform as isomorphs from a statistical or 

psychometric perspective’ (p. 7).  Once validated, templates can be stored and used 

multiple times to generate new items (Luecht, Burke, & Devore, 2009; Lai, Gierl & 

Alves, 2010).  Finally, to the extreme right of Figure 1.1 is the calibration of the 

assessment tasks and quality control mechanisms (Luecht, 2013).  

 Item difficulty index is an important statistic that is used to evaluate the 

effectiveness of an item or a test.  Traditionally, difficulty is treated as an empirical issue,  

using a post hoc approach, in which the analysis is carried out using data hungry 

psychometric models.  An understanding of the features that influence difficulty, and that 

valid estimates of item difficulty can be successfully achieved a priori, through reversed 

assessment engineering is imperative. 
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  Through the use of assessment engineering cognitive task model grammar, 

cognitive task models can be created with unique design features which captures and 

controls task difficulty and other psychometric operating characteristics for the family of 

items, which operate similarly psychometrically and provide interpretations of knowledge 

and skills, exchangeable at specific location along the scale (Luecht, 2008, 2009, 2012, 

2013).   Zhou, (2009) defines a cognitive task model as a: 

 
Generic profile of an assessment task which contains descriptions of knowledge 
and skills, descriptions of key features (e.g., objects and their properties, variables 
for difficulty variation) of the task, specifications of task representation material 
and any required condition, and classifications of response actions returned for 
scoring. Task models are created at different locations along a construct map and, 
in turn, each model provides measurement information in a particular region of 
the construct map.  (p. 8) 

 
 

Each task model therefore represents a group of items in a cognitively meaningful 

way, incorporating aspects of declarative and procedural knowledge, relevant content and 

ancillary features, all which go together to directly impact the cognitive complexity of the 

task (Luecht, Dallas & Steed, 2010).  In describing the specific nature of an item, task 

models incorporate the conditions under which the task is to be completed, the materials 

presented, and the nature of the work product that will be generated by the examinee 

(Gorin, 2007).  

The Rasch statistical IRT model, a one-parameter logistic model, is often used for 

analyzing data from assessments to measure the level of difficulty of an item(s) based on 

a large number of examinees responses.  The Rasch analysis is appropriate to make 

inferences about an examinees ability and the characteristics of an item.  The level of 
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difficulty of the item ranges on a scale of -3 to + 3.   Traditionally, the level of difficulty 

of a particular task is usually not known until after the specific items have been 

administered to a large number of examinees and estimates of difficulty analyzed.  There 

is also no way of comparing the cognitive complexity across items or to establish the 

level of complexity that was intended to challenge the examinees (Mislevy, 2006).   In 

addition, the vague content specifications make difficulty targets hard to reach, and most 

item-level content specifications pay no attention to item difficulty and task complexity 

attributes that contribute to difficulty. Therefore, it become difficult to understand exactly 

what is being measured and how best to measure it.  Thus construct validity can be 

supported when the correspondence between the processes measured by items and tests 

are in alignment with those that were intended by the researcher (Gorin, 2006). 

There is also the problem of ascertaining the uncertainty  associated with whether 

items drawn from the same content and have different levels of difficulty are measuring 

the same complexity of content in relation to knowledge, skills, resource utilization, and 

context (Luecht, 2009; Lueong, 2006).   Hence there is a state of imbalance between 

content and statistical test specifications.   

Assessments engineering cognitive task models are designed to adequately test 

difficulty levels and also to maintain difficulty or their statistical location along the scale  

in addition to other psychometric characteristics of the tasks (Luecht, Burke & Devore, 

2009).  This will allow for test items on an assessment to be designed to test a wide range 

of complexity and difficulty levels for the entire range of candidates’ cognitive skill 

levels.         



www.manaraa.com

6 
 

The purpose of this research is to use reverse assessment engineering principles to 

develop cognitive task models, through the use of task model grammars and careful 

design principles, to determine the difficulty and complexity of the items on two 

Advanced Placements large scale high stakes assessments.  Numerous colleges across the 

United States use Advanced Placement Tests to check the academic skill levels of 

entering students, so that they can be appropriately placed in classes at the right level, or 

may enable them to skip some introductory courses, or highlight areas where more 

preparatory work is needed.       

Purposes of the Study 

The purposes of this research dissertation are: 

 To demonstrate the plausibility of computing reverse assessment engineering 

cognitive task model derived difficulty parameters estimates through careful 

engineering design.  

 Examine the impact of cognitive task models derived estimates and empirical 

Rasch model estimates on examinee’s proficiency scores.  

Research Questions 

This dissertation will address the following research questions. 

1. To what extent can cognitively task model derived difficulty estimates be 

compared to statistical empirical Rasch model ‘b’ parameter estimates? 

2. Can assessment engineering cognitive task model derived difficulty estimates 

replace the Rasch Model ‘b’ parameter estimates in scoring examinees?  
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Significance of the Study 

There are tremendous advantages to be gained from using the assessment 

engineering cognitive task modeling system. The cognitive task modeling process is 

capable of generating numerous field test items that could mimic existing operational test 

forms and create tests with established item formats that allow testing to be consistent 

from year to year (Perea, 2011).  This can be very beneficial for large scale testing 

companies, where considerable numbers of items, are needed to support the development 

of large item banks.  Thus items can be mass produced with known parameter estimates, 

without the need for pretesting.  The result is cost effectiveness and increased potential 

flexibility for developers (Clauser & Margolis, 2006).   In addition, developers are able to 

meet timely commitment for supplying the demands for summative assessments.   At the 

classroom level, task modeling can produce an assessment tool that greatly reduces the 

time in which teachers gather and report critical information back to their learners, thus 

delivering timely formative feedback, identify student’s areas of weakness and provide 

appropriate interventions.      

  Assessment engineering uniquely designed cognitive task models support 

proficiency claims, and have a relative ordering in terms of complexity and difficulty 

along the scale.   In addition, changes in the content is also reflected as progress is made 

up the proficiency scale as the content gets increasingly more complex (Luecht, 2013).  

This confirmatory, iterative approach to test development is in stark contrast to traditional 

approaches, where content validity is only established through relevance and 

representativeness of the distribution of items for content relative to a larger domain  
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(Messick, 1989).  Thus the central issue for assessment engineering is construct validity.  

This overcome the limitations of the traditional approaches as construct validity provides 

a strong foundation for test development and score interpretation when descriptions of the 

cognitive processes and hypothesized relationships among these processes are outlined 

(Embretson, 1998; Mislevy, 1994; Messick, 1995). 

In traditional approaches to testing, item development is primarily a manual 

process, in which items are individually crafted, and reviewed.  Drasgow, Luecht & 

Bennet (2006) corroborated this when they noted that:  

 
The demand for large numbers of items is challenging to satisfy because the 
traditional approach to test development uses the item as the fundamental unit of 
currency. That is, each item is individually hand-crafted—written, reviewed, 
revised, edited, entered into a computer, and calibrated—as if no other like it had 
ever been created before. A second issue with traditional approaches is that it is 
notoriously hard to hit difficulty targets, which results in having too many items at 
some levels and not enough at other levels. Finally, the pretesting needed for 
calibration in adaptive testing programs entails significant cost and effort.  (p. 
473). 
 
 
The subject matter experts (SME’s) and test developers, the principal decision 

makers, independently determine what content are to be tested, the design, test 

specification, quantitative constraints and statistical targets of the tests (Zhou, 2009; 

Luecht, 2013; Shu, Burke & Luecht, 2010).  Content validity is often compromised, as 

the areas to be tested are prioritized, with most of the content blueprints representing a 

compromise of priorities within the domain of interest.  In addition content validity does  

not provide any direct evidence that aids in the interpretation of scores or inferences 

drawn from observable performances on a particular form of the test (Luecht, 2008;  
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Messick, 1989).   Moreover, assessment design and analysis, is one of the areas where 

many teachers lack formal training.  Research conducted by Stiggins, (1999) showed, for 

example, that fewer than half of the states require competence in assessment for licensure 

as a teacher.   Race, (2009), noted that many assessors struggle in many subject 

disciplines to make exams valid, reliable and transparent.   The continued reliance on 

traditional blueprinting to generate items lacks a strong system of rules or concrete 

indicators, necessary for consistently writing or coding items to the content categories 

(Luecht, 2009). 

            Assessment engineering cognitive task modeling process provides a detailed 

design plan for test development in which psychometricians, subject matter experts and 

cognitive specialists all work together to design the assessment.  The items within a 

family are designed based on well-developed and empirically verified cognitive task 

models of complexity and specifies the skills needed to perform a particular tasks within 

that family.  In addition, declarative knowledge, auxiliary tools, and overall contextual  

complexity of the task setting are stipulated (Luecht, 2013).  Through its well-designed 

approach, test developers understand what is being measured and how it is being 

measured.  The processes which contribute to difficulty and complexity are clearly and 

explicitly laid out.  Leighton, (2004) also points out that researchers should be trained in 

both cognitive psychology and educational measurement as this may be the most valuable 

resource to the test development industry.   This will allow test developers and 

practitioners to become more educated about theories and methods of cognitive 

psychology so that these new tools can be utilized to tackle questions of task difficulty 
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and complexity in addition to a variety of psychological data collection methods such as 

verbal protocols and interview tools to gather information from these sources (Gorin, 

2006).    

  Finally, assessment engineering can potentially improve the quality of 

assessments to which examinees are exposed on a regular basis and provide a most 

efficient and effective method in assessing student’s skills and knowledge.  Through its 

goals of supplying an extensive supply of low cost items and to generate one or more 

well-designed scales that do not require individual item pretesting or data-hungry 

psychometric models (Luecht, 2006, 2008, 2009, 2012, 2013), it is hoped that the 

purposes of testing which Fulcher & Davidson (2007), describes as building better tests 

and gaining a better understanding of what is actually being tested will be accomplished.  

Olsen, Olsen & Smith, (2010) noted that assessment engineering task modeling 

and analysis processes can potentially propel the educational measurement profession 

forward in very significant and meaningful ways, ultimately influencing what and how  

Students’ learn, drive improvements in education and impact the overall characteristic of 

assessments.   Through its goals of supplying an extensive supply of low cost items and 

to generate one or more well-designed scales that do not require individual item 

pretesting or data-hungry psychometric models (Luecht, 2006, 2008, 2009, 2012, 2013). 

Leighton, (2004) points out that researchers should be trained in both cognitive 

psychology and educational measurement as this may be the most valuable resource to 

the test development industry.  Therefore, it is imperative that test developers and 

practitioners become more educated about theories and methods of cognitive psychology 
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so that these new tools can be utilized to tackle  questions of task difficulty and 

complexity in addition to a variety of psychological data collection methods such as 

verbal protocols and interview tools to gather information from these sources (Gorin, 

2006).    

Definition of Terms 

The following definitions of terms are provided to ensure clarity and aid 

understanding of the text:  

Assessment Engineering: Is an innovative approach to measurement where 

engineering principles are used to direct the design, scoring, analysis, reporting and 

implementation of tests (Luecht, 2012).  

Reverse Assessment Engineering: Describes an analytical process of test creation 

that begins with the actual test questions and make inferences about the language that 

drives it, such that equivalent items can be generated that closely relates text complexity 

that inextricably connects to reading comprehension and supports the fidelity of the 

reflection process (Fulcher & Davidson, 2007). 

   Task models: Cognitively oriented specification for a class or family of items that 

integrates declarative and procedural knowledge components as well as relevant content 

and auxiliary features that affect the cognitive complexity of the task (Luecht, 2013). 

 Test blueprint: Is a specification of the different quantitative constraints used to 

assembly a test. 
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Task Model Map: Is a descriptive representation of the precision of key decisions 

in the corresponding region of the construct map, or richer interpretations of performance 

in those regions of the scale (Luecht, Dallas & Steed. 2010). 

Isomorphs: Items generated with the constraint that they all be of the same 

psychometric attributes (Bejar, 2002). 

            Complexity: Complexity describes the mental operations in which the brain deals 

with information through different levels of thought processes such as to demonstrate 

thinking at the levels of Bloom’s Taxonomy and Webb’s Depth of Knowledge.  It relates 

to the kind of thinking, action, and knowledge needed to answer a question, solve a 

problem, or complete a task. 

Difficulty: Item difficulty index refers to the amount of effort that the learner must 

expend, within a level of complexity in order to accurately respond to an item.  It is a 

characteristic of both the item and the examinee taking the test. Thus it describes the 

interaction between the learner’s mental processes and the item. 
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CHAPTER II 
 

REVIEW OF LITERATURE 
 
 

Traditional Table of Specification and Test Development 

Luecht, (2013) describes a traditional table of specification (TOS) or content 

blueprint as ‘Consisting of a list of all the relevant topics or standards that adequately 

represents a particular domain to be assessed. Each topic or standard creates a 

specification for how many items are to be included on each test form’ (p. 3).  

Traditionally, a Table of Specification has been commonly used by test 

developers as the basis for constructing assessments, in order to adequately evaluate 

examinees on the subject matter that was taught, as well as the appropriate level of 

cognitive processing, or level of difficulty, to match how the subject matter was taught 

(Natar, Zuelke, Wilson & Yunker, 2004).   Carey, (1988) enumerated six major elements 

to be considered when developing a Table of Specification: (1) weight or balance of the 

goals/objectives (2) balance among the levels of learning or levels of taxonomy; (3) the 

test format; (4) length of the test; (5) the number of test items for each goal and level of 

learning; and (6) skills selected from each goal framework.  Linn and Gronlund (2000) 

further suggested that the Table of Specification should include the total number of test 

items and assessment tasks and the percentage allocated to each objective and each area 

of content.  Schmeiser and Welch (2006) indicated that the process should begin by
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defining explicitly, the linkage between test purpose and the criterion that defines the test 

domain.     

All of the decisions regarding what are to be tested and how they are to be tested 

are made by subject matter experts (SME), educators and test developers, the principal 

decision makers.  These decisions are prioritized based on the depth and breadth of the 

particular domain being tested. Once all major decisions are made, item writing begins, 

which is usually done in isolation.   Messick, (1994) in noting the counter-productivity of 

this practice asserts: 

One cannot simply construct “good tasks” in isolation, however, and hope that 
someone down the line will figure out “how to score them.” One must design a 
complex assessment from the very start around the inferences one wants to make, 
the observations one needs to ground them, the situations that will evoke those 
observations, and the chain of reasoning that connects them. (p. 40). 

 
Numerous criticisms have been levelled at traditional test blueprinting.  These 

include inadequate content validity, which does not provide any direct evidence to help in 

the interpretation of scores or inferences drawn from observable test performances 

(Messick, 1989).  This is further compounded by the fact that most content coding 

schemes are inherently fallible and lack a firm system of rules or concrete indicators 

which will allows for consistently writing or coding items to the content categories 

(Messick, 1989; Luecht, 2012, 2013).  

Traditional table of specifications often fail to provide any guidance about the 

intended difficulty and task complexity attributes that contribute to the difficulty of an 

item within a particular content category.  In instances, where the cognitive specifications  
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are vaguely outlined, they are seldom interpreted or used.  Thus, it is never known how 

complex an item is until after it has been administered to large numbers of examinees and 

estimates of difficulty computed (Luecht, 2013, 2012).  Webb, (1999) noted that in 

determining the cognitive complexity level of items, it usually involves classifying items 

into defined categories after the items have been developed.  Hence, changes in difficulty 

are usually attributed to the random outcome of item writers or largely due to the 

misunderstood features or content that one item writer chooses to include or exclude in 

the item writing process. There is also no way of comparing the cognitive complexity 

across items or to determine if that level of complexity is what was intended to challenge 

the examinees (Mislevy, 2006; Luecht, 2013).  Statistical specifications are not usually 

considered alongside the content blueprint; rather, test forms are built to be statistically 

parallel.  Test forms built from such specifications usually produce scores with only 

reasonable psychometric quality (Mislevy, 2006; Luecht, 2013). 

 Cognitive Task Modeling and Test Development 

The cognitive task modeling process provides a different and far more detailed 

approach to design test specifications.  It embodies a system of elaborate cognitive 

specifications that details every assessment task in a way that takes into account depth-of 

knowledge, required cognitive skills, cognitive load, auxiliary information and subject-

specific content and contexts, to describe a family of items that present similar challenges 

to the examinee and behave in a statistically equivalent manner (Burke, Devore & 

Stopek, 2013; Luecht, 2013).    Each Task Model is very clearly and carefully outlined so 

as to assess the observable behaviors that are informative about the latent characteristics  
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of the examinee along the proficiency scale (Hendrickson, Huff and Luecht, 2012).   

According to Luecht, (2013):  

Task models incorporates relevant procedural skill requirements of the task, 
content representation and declarative knowledge load, and location along a scale, 
it is an integrated specification for a family of items that presents the same type of 
task challenges to every examinee under the same conditions, and where every 
item generated from the tsk model has approximately the same relative difficulty 
(p. 65). 

 
 
In designing the task model, it is important to meaningfully capture the purpose, 

use and constraints of the assessment task; the ways feature variations affect task 

complexity and item difficulty, construct relevance, and evidentiary focus (Luecht, 2013).   

Due consideration is also given to the content domain and cognitive levels, feature that 

connect a task with specific knowledge and skills, that describes the context in which 

examinees response provide data about what they know or can do.  This is very important 

as it provides (a) detailed guidelines to item writers, such that items intended to measure 

the same content and skills have similar specifications and statistical properties and (b) 

the inferences made about students are supported by the chain of reasoning from claim, to 

evidence, to task model, to template, and to item (Luecht, 2013).  

A task model can be represented using a task model grammar. Task model 

grammars give a description of domain-specific explanations of cognitive complexity.  

The task model grammars control complexity by incrementally changing the difficulty 

level through the use of cognitive skills statements, which contain the action verbs.   
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When sources of cognitive complexity are identified, test developers can use them to 

create items that cover the range of ability within a given achievement level or to create 

separate task models for each targeted level of complexity (Henderson, Ewing, Kaliski & 

Huff, 2013).   Task Model Grammar statements are designed to replace the traditional 

dual or three-part content and statistical specifications or traditional content coding 

currently used by test developers.  They provide a formal description of; (a) the 

combinations of defined declarative knowledge and skills needed to solve the task; (b) 

the information density and complexity of the task components; (c) auxiliary information 

or tools that facilitate or complicate the task and; (d) other relevant attributes associated 

with each component and or set of relations that might affect item difficulty (Luecht, 

2006a,2006 b, 2007,2008; Luecht, Burke & Devore, 2009; Luecht, Dallas, Steed, 2010).   

Assessment engineering cognitive task models replace traditional content 

specifications  through careful empirically based quality control mechanisms, whereby 

large numbers of items can be generated manually or automatically, sharing exactly the 

same cognitive task complexity specifications and perform as statistical isomorphs 

(Luecht, 2013).   A task model test specification that is well-developed and thorough, 

should translate the construct into items that provide meaningful information about 

candidates’ levels of proficiency.     

Gierl and Haladyna (2013) expound that task models serve two important 

functions.  They provide concrete representation of the knowledge and skills that are 

specified in the construct map; and they define classes of tasks to be performed, by laying  
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out the knowledge, skills and abilities required to solve any type of task within a specific 

class.   

The Development of Cognitive Task Models 

Cognitive task models development is an iterative process that is based on the use 

of either strong or weak theory.  Strong theory gives a detailed description of the 

variables specified in the theory that affects examinee performance, and specifies item 

difficulty features.  Weak theory presents a very practical approach to cognitive task 

modeling and uses design guidelines rather than design principles garnered from a 

combination of experience, luck, intuition, and research for its development (Drasgow, 

Luecht, & Bennett, 2006).   Gierl and Lai, (2013) have successfully used weak theory to 

generate item models for Grade 9 Science and Grade 3 Mathematics assessments.    

 There are two approaches to developing cognitive task models.  They are the 

Construct mapping approach or top-down and the reverse-engineering approach or 

bottom-up.  In the top-down approach, cognitive task models are created directly from 

evidence models.  Hendrickson, Huff, & Luecht (2010), provide the following guidelines 

for building cognitive task models.  

 Specify claim(s) and feature(s). 

 Evidence statements inherent in claim(s) are targeted at intended levels of 

cognitive complexity or achievement levels. 

 Task models are created from evidence statements targeted at different levels of 

achievement, to maintain the idea of ordered task models.  
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 Decisions pertaining to the items are finally addressed  

 All ambiguity in the claims are removed and redefined as observable evidence. 

The level of cognitive complexity or proficiency of the claim at the evidence statement 

level is identified to determine where the task models for assessing the claim will be 

located.  Task models developed for a certain claim or evidence statement can be nested 

within an achievement level to reflect those claims and evidence, targeted at that specific 

achievement level.  This allows score interpretation for the assessment to be richer and 

supported by a stronger validity argument (Henderson, Ewing, Kaliski & Huff, 2013). 

 When the features that impact the complexity of the tasks are articulated and the 

sources of cognitive complexity identified, test developers can use them to create items 

that cover the range of ability within a given achievement level or to create separate task 

models for each targeted level of complexity (Henderson, Ewing, Kaliski & Huff, 2013).    

In developing cognitive task models using reverse-engineering or bottom-up 

approach as utilized in this research, the models are created using cognitive task model 

grammars.   The task models grammars are described as cognitively oriented statements 

that incorporate all of the salient procedural, declarative, and contextual aspects of a task 

model Luecht (2006a, 2006b, 2007, 2008; Luecht, Burke and Devore, 2009).   Cognitive 

task model grammar statements are used descriptively to give an explicit description of: 

(a) combination of cognitive skills needed to solve the task; (b) declarative knowledge 

components used to challenge examinees in that region of the scale; (c) information 

density and complexity of the task components; (d) auxiliary information, resources or 
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tools that facilitate or complicate the task; and (e) other relevant properties and/or set of 

relations that might affect item difficulty (Luecht, Dallas & Steed, 2010).  The task model  

skills statements are specified using action verbs.  The action verbs are carefully selected, 

unambiguously and meaningfully defined to give a description of the procedural skills 

that the examinee uses to complete a task.  Action verbs must also maintain their location 

relative to other action verbs along the trajectory or scale.    

 The following steps outlined by Luecht, (2006, 2007, 2008); Luecht, Burke & 

Devore, (2009), are essential for developing reverse engineering or bottom-up cognitive 

task models through the use of cognitive task model grammars. 

1. Develop task descriptive statements that contain appropriate action verbs which 

must be unambiguously defined. 

2. The creation of task model grammar statements is next.  The statement are 

iteratively generated to reflect four cognitive dimension, which constitute the 

foundation for building the cognitive task models.  They are:  (a) the relative 

cognitive level and extent of actions required to complete each task (2) the 

information density, including the amount and complexity of the data to be 

considered, classified, manipulated, or analyzed; and (3) the complexity of the 

context and auxiliary information, tools that might facilitate or hamper the 

examinee in completing the task, and  

3. The count of apparent cognitive actions required to complete the task. 

4. Derived task-models are iteratively built to reflect the cognitive complexity of the 
task. 

 



www.manaraa.com

21 
 

 As cognitive complexity increases along any of the four dimensions, there will be 

corresponding increase or decrease in difficulty and operating characteristics of the 

assessment tasks.  The four cognitive dimensions are linked to the empirical location of a 

particular task model on a scale.  The location of the tasks along the scale can be changed 

by systematically altering the cognitive dimensions through manipulation of the task-

model template features and components.  Ultimately, the task model acquires a central 

location on a scale by specifying and controlling the cognitive level of the action(s) or 

manipulation(s) required by each task model, controlling information density and context 

complexity by manipulating the number and complexity of knowledge objects for each 

task, as well as identifying key properties of the objects relevant to the task and 

constraining the number and properties of the relationships among objects, and by 

constraining the use of auxiliary tools and facilitative task components. Features that do 

not relate to changes in location are ignorable and exchangeable.  Task model grammar 

can be used to represent each assessment task based on the four cognitive dimensions 

(Luecht, 2007, 2008a, 2008b, 2009). 

 A task model grammar has five components.  They are: (a) actions or skills; (b) 

variables or variable sets used in the problems; (c) properties of the values assigned to 

variables or constants; (d) design factors for the distractors; and (e) verbal/information 

load of the context or problem. These task model grammar components range from 

simple to complex and requires continual review and refinement content experts and item 

designers to ensure understanding, consistent use, and the ongoing utility of the elements 

(Luecht, 2013). 
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  Task model grammars can be represented as procedural skills component and 

declarative skill components.  Procedural skill component uses (a) primitive actions verbs 

or skills, and have a fixed interpretation of the required skill location along the scale and  

(b) skill constructions or complex skills that combine lower-level primitive clauses to 

form higher-order clauses.  Declarative knowledge components can range from simple 

concepts to complex systems of knowledge components that are linked together by 

complex relations.  To make the task more challenging for the examinee, and increase the 

overall information density, it is imperative to increase the cognitive processing loads in 

working memory, by using more knowledge objects, more complex knowledge objects, 

more complex relations, and offering fewer auxiliary tools or resources (Luecht, 2013).    

A task model grammar can be represented in the predicate calculus form as: 

 
Action 2[action 1(is.related(object1,object 2),object =|context,aux.tools)] 
 

 
The complexity of the ‘actions’ can differ in terms of ordered complexity or 

functionally nested.  Complexity of the ‘objects’ can also differ by assigning more or less 

relevant properties; or in quantity, so that by including more objects, greater cognitive 

load and, correspondingly, greater complexity will result.  In addition, ‘objects’ can be 

made more complex by incorporating ‘relations’ that can vary in type.  Properties can 

also be added that can affect the complexity of the ‘relations’.  The ‘context’ and 

‘auxiliary tools’ have important properties and controls that affect the complexity of the 

task in predictable ways (Luecht, 2009, 2013).  Therefore task model grammars replace 

content blueprints by providing an integrated specification for a family of items that 
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present similar challenges to every examinee under the same conditions, with every item 

generated from the task model having approximately the same difficulty (Luecht, 2013).  

Rules for Building Cognitive Task Models 

 Luecht (2012, 2013) postulates the following rules for building cognitive task 

models. 

 Task models should be incrementally ordered by complexity.   

 Task models that are located at the same proficiency level must reflect 

conjunctive performance 

 Higher performance assumes that lower level knowledge and skills have been 

successfully mastered.            

Task Model Maps 

Task model maps represents the distribution of the task models along the 

proficiency scale, by incorporating difficulty and complexity.  The number and 

concentration or density of task models along the scale is directly proportional to the 

amount of measurement precision that is needed most at that location along the scale.  

This provides richer interpretations of performance in areas of the scale that correspond 

to the regions on the construct map (Luecht, Dallas & Steed, 2010).   

 Task models differ in location (difficulty) along the proficiency scale. Task model 

maps that places the concentration of task models closer to the lower end of the map as 

seen in Figure 4, may denote minimum competency, conversely, those at the higher end 

of the map represent mastery decisions or competencies.  Task models near the center of 
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the proficiency scale, either maximizes precision of the mean or of mastery decisions 

representing average performance.  Each dot potentially represents large families of items 

(Luecht, Dallas & Steed, 2010).    

                                 

                                                                      

 
Figure 2.1   Task Model Map of Scale Construction 
 
 

Building Task Models That Control Difficulty and Dimensionality 

Task models are developed with inherent features that control difficulty and 

dimensionality.  These specific features includes objects and their properties, nature of 

the relationships among objects, and cognitive level of the action(s) required by the task 

(Zhou, 2009).  This suggests that: (a) task models can order themselves, thereby 

controlling difficulty with respect to the construct (b) extraneous nuisance dimensionality 

is controlled; (c) each task model is capable of creating multiple item models and, in turn, 

to create multiple items; (d) what information is scored as well as which scoring 

evaluators are used (Luecht, 2007; Zhou, 2009). 

 Luecht, (2013) outlined the following steps for building task models that control 

difficulty and dimensionality:   
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 Control the number and complexity of key knowledge objects for each task 

 Identify the key properties of the objects relevant to the task (facilitative or 

distractive) 

 Control the number of objects to be acted upon or manipulated 

 Constrain the number and nature of the relationships among objects 

 Specify and control the cognitive level of the action(s) or manipulation(s) 

required by the task 

 Constraining the use of auxiliary tools and facilitative task components 

 Explicitly define the nature and nesting of relations among objects 

 Explicitly define the nature and hierarchical sequencing of functional clauses 

   Complexity of the task is impacted by many factors such as the number of 

communication tasks, more topics; Information density: higher structural density of text 

or speech samples.  Luecht, (2008, 2009; Luecht, Dallas and Steed, 2010) recommend 

increasing task complexity based on controlling and constraining the knowledge objects; 

relations; and auxiliary tools or resources.  

            Empirical studies on how cognitive complexity affects differences in the difficulty 

of assessments are emerging, such as Mosenthal and Kirsch (2007), who defined three 

classes of variables that correlate with task difficulty. They are the (a) length and 

organizational complexity of the materials to which document tasks refer (b) length and 

organizational complexity of task directives, and (c) difficulty of the task solution 

process. These features accounted for about 80% of the variance of the IRT task 
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difficulty parameters. The details of such analyses can help item writers control the 

difficulty of the tasks they develop (Embretson, 1985).  

         Scheuneman, Gerritz, and Embretson (1991), examined item difficulty in reading, 

and found that about 65% of the variance in item difficulties in the reading section of the 

National Teacher Examination related to variables built around syntactic complexity, 

semantic content, cognitive demand, and knowledge demand.  

Methods of Comparing Cognitive Task Model Derived Difficulty Statistics 

Assessment engineering is well suited to promote and extend the concept of item 

families, cluster and bundles in its analysis for its task models which are located at 

different regions of the construct map measurement scale.  The different approaches for 

modeling data involving item families are developed for dichotomous and polytomous 

data, in order to gain a better understanding of examinee responses.  A number of 

statistical procedures have been identified to calibrate the item models including the 

linear logistic test model (Embretson & Daniel, 2008), the 2PL-constrained model 

(Embretson, 1999), the hierarchical IRT model (Glas & van der Linden, 2003), the 

Bayesian hierarchical model (Johnson &Sinharay , 2005; Sinharay Johnson, & 

Williamson, 2003), the expected response function approach (Mislevy, Wingersky, & 

Sheehan, 1994), and the linear item cloning model (Geerlings, van der Linden, & Glas, 

2011).  These models are used with automatically generated items, which can be divided 

into several item families whose primary goal is to estimate the family-level model 

parameters by accounting for the dependence among the items within the families 

(Sinharay & Johnson, 2013).  Item group score have been known to provide a more stable 
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aggregate score and more theoretically meaningful scoring unit than the individual item 

(Comrey, 1984).   

The Related Siblings Model (RSM), (Glas & van der Linden, 2003, 2001; 

Johnson & Sinharary, 2005) is highly recommended for multiple choice items, and gives 

an indication of the variability of sibling items within families.  Johnson and Sinharary, 

(2005), extended the RSM model to incorporate polytomous item families in their  

formulation, a Bayesian hierarchical model that assumes a separate item response 

function for each item but relates the siblings’ item parameters within a family using a 

hierarchical component (Glas & van der Linden, 2001).  Multiple Choice items were 

modeled using the 3PL model and Constructed Response items were modeled using the 

Generalized Partial Credit Model (Muraki, 1992).    

The Identical Sibling Model (Hombo & Dresher, 2001) assumes a single response 

function for all items in a family, where all of the items are treated as a single entity.  One 

criticism is that it is restrictive and does not allow for variation within the item family.   

Gierling, Glas & van der Linden, (2011) recommended the use of the Linear Item 

Cloning Model, which accounts for the association among responses to a common 

sibling.  The model uses the Response Sibling Model for the first two levels and then 

adds a Linear Logistic Test Model structure for the expected value of the item difficulty 

parameter of each family. 

Wilson & Adams (1995) recommend the use of Rasch models for item bundles 

where the clusters or bundles of test items are identified by a common stimulus materials, 

common item stems, common item structures, or common item content. 
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Research conducted by Olson, Olsen and Smith (2010) for within family or item 

cluster groups revealed that for each of three test forms, on average, the mean 

correlations were slightly higher within the cases groups than across the cases by about 

.04.  This can potentially pave the way for calibration of item families and allows for 

generation of items on the fly from the family structure.   Item families should be 

sufficiently defined so that item difficulty, discrimination and model misfit parameters be  

applicable to each sibling item drawn or generated from the item family or cluster.  When 

calibrating item family models, the dependency structure inherent among the items from 

the same item family should be taken into account (Olsen, Olsen & Smith, 2010; 

Sinharaay, Johnson & Williamson, 2003; Johnson & Sinharay, 2005).  

Studies Comparing Cognitive Task Model Difficulty and Dimensionality 

There are very few empirical studies that have been conducted to compare the 

results of item parameter statistics for cognitive task model processes.  Research 

conducted by Luecht, Burke and Devore (2009) compared the relative difficulty of the 

task models with empirical difficulty indicators, based on examinee responses. The 

results showed a high correlation of .92 between the task-model ordering based on the 

complexity ratings and coding and the Partial Credit Model (Masters, 1982) proficiency 

score estimates.  

  Zhou, (2009) in reviewing select assessment engineering principles for a Certified 

Public Accountant Examination, noted that the cognitive model development phase, 

driven by task and item modeling, facilitated accurate and efficient item development.  
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The benefits lie in its facility to control content representation and to give an indication of 

the difficulty levels of items (Zhou, 2009).   

            Luecht, (2013) in utilizing assessment engineering task models and templates for 

developing Computerized Adaptive Performance Tasks, was able to manipulate various 

template components in order to correspondingly change the task complexity, 

information density, context complexity, and facility and utility of auxiliary tools and 

information.   According to Luecht, (2013), assessment engineering is a powerful and  

very practical approach for implementing self-adapting, complex performance 

assessment tasks that embodies multiple perspectives of test development, computer 

systems and software design, as well as psychometrics. 

Luecht, Dallas & Steed,( 2010)  in mapping out ordered sequence of fixed 

specification cognitive task models for multidimensional high school formative algebra 

and reading comprehension assessments, successfully developed task models, through the 

use of task model grammars, which later helped in developing templates for the items. 

These studies confirm the feasibility that cognitive task modeling can potentially 

be a better way of designing high-quality, replicable, and scalable assessment task with 

the specification that specifically incorporates ordered complexity (Luecht, Burke & 

Devore, 2009).   

Psychometric Analysis of Cognitive Task Models 

        In calibrating the cognitive task models, psychometric models are used in a 

confirmatory manner to ascertain how well the measurement information supports the 

scales. The dataset can be analyzed at the item level or at the task model family structure 



www.manaraa.com

30 
 

level. Assessment engineering psychometric calibration procedures for task models 

and/or templates has obvious advantages which according to Luecht, (2007) are (a) less 

pretesting, (b) robust parameter estimation, and (c) misfit is minimized if the families are 

well formed.   

           The Rasch model is frequently used to analyze data.  It is mathematically specified 

as: 

 

ሼܺ௡௜ݎܲ ൌ 1ሽ ൌ
݁ఉ೙ିఋ೔

1 ൅ ݁ఉ೙ିఋ೔
 

 
 
 , is the ability of person  and  is the difficulty of item . , is the 

probability of a correct response.   Modeling the locations of tasks along the scale, gives 

an indication of what a person at a given level of proficiency might be expected to do in 

terms of requirements of the tasks. This is important as it allows for greater interpretation 

and adds to the meaning of a score.  From a cognitive task modeling perspective, this can 

reduce or even eliminate pretesting meant to estimate item parameters (Mislevy, 

Sheehan, & Wingersky, 1994).    

Geerlings, Glas and van der Linden (2011) used the Linear Item Cloning Model 

(LICM), a hierarchical IRT model for the calibration of a dataset consisting of items 

generated by rule-based cloning algorithms. The parameters of the model were estimated 

using Bayesian framework, with a data-augmented Gibbs sampler.  These rules or 

radicals were modeled as fixed effects whereas the joint effects of all irrelevant item 

features also called incidentals were modeled as random effects. They concluded that the 
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model is applicable to situations where items within families are generated by the same 

rules.  

Glas and van der Linden (2003) also conducted three different studies in which 

families of cloned items were calibrated and administered under the multilevel 3PL IRT 

model.  The results of the study of the item pool calibration accurately confirmed that it is 

advantageous to model the family structure in data from cloned items by a two-level IRT  

model with different parameter distributions for each family.  They noted that using a 

hierarchal model accounts for item model structure without ignoring variation among 

instances.   Both Glas and van der Linden (2003) and Sinharay and Johnson (2008) found 

that the hierarchical model is a better fit to the data.  Gierl, Leighton and Hunka (2007) 

successfully showed how the Attribute Hierarchical model (AHM) can be used to classify 

examinees responses using the 2PL IRT model into a set of structured attribute patterns 

associated with different components specified in a cognitive model of task performance.   

The model facilitated the interpretation of student response patterns with respect to a 

cognitive model of task performance, and lends itself to modeling examinees 

performance in quantitative domains where learning is cumulative within topics.   

Johnson and Sinharay, (2005) calibrated polytomous item families, using the 

Related Siblings Model (RSM) and found that the model provides a reasonable way to 

calibrate item families that allowed for some variation. They used the Markov Chain 

Monte Carlo (MCMC) algorithm for the Bayesian model, the family score function, and 

the approximate Bayes factors.  Hierarchical Bayesian framework is often used to 

estimate the task model parameters, by employing hyper-parameters (Luecht, 2013).   
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Sinharay, Johnson and Williamson (2003) also applied the Related Siblings 

Model (RSM), to fit the hierarchical model using the Markov Chain Monte Carlo 

(MCMC) algorithm (Gelman, Carlin, Stem, & Rubin, 1995; Gilks, Richardson, & 

Spiegelhalter, 1996). The hierarchical model assumes that for each item family an 

expected response function (FERF) gives the probability of a correct response to an item 

randomly generated from the item family for a given examinee ability.  They found that it  

may be possible to calibrate the item family once without calibrating those items in the 

future. The RSM took into account the dependency among the items belonging to the 

same item family.   

Williamson, Johnson, Sinharay & Bejar, (2002b) explored the application of 

hierarchical model calibration as a means of reducing, if not eliminating, the need for 

pretesting of automatically generated items from a common item model prior to 

operational use.  They applied the Related Siblings Model to mathematics item data to 

explore the application of the model for calibrating operational data incorporating 

multiple items generated both from automatic item generation (AIG) and manual item 

generation. While some item families demonstrated some variability in Item 

characteristic curves (ICC’s), many others were very similar and approximated the ICC 

consistency observed in families that used the same item repeatedly on each form.   In 

cases where the variations in ICCs for item families were consistently similar to those  

obtained from recalibration of the same multiple-choice item over repeated 

administrations ,  the evidence suggests that model generated item models can be 
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leveraged to produce multiple parallel items that have highly similar statistical properties 

(Williamson, Johnson, Sinharay and Bejar, 2002b). 

Michel (2007), used cluster analysis to assist in the interpretation of quantitative 

item models.  The item models were based on items from an operationalized GRE test 

and generated instances calibrated using a 3PL IRT model.   The dendograms produced 

in the analysis can be used to identify related clusters of instances which might not be 

easily identified by simple inspection of the item parameter estimates. 

Luecht, ( 2009) demonstrated through the use of hierarchical Bayesian calibration 

framework  that multiple instances of nodes can be created, calibrated and scored from a 

particular template and used interchangeably, for the Computerized Adaptive 

Performance Task (CAPT).  Each node or collection of nodes can be calibrated as a class 

or family, having similar underlying distribution of item parameter estimates.  The 

cognitive task models and templates, used were manipulated to produce changes in task 

complexity, information density, context complexity, and facility and utility of auxiliary 

tools and information.  The logically determined complexity indices have correlated 

strongly with item difficulty for the CAPT.  The nodes provided a convenient way of 

linking the instantiation of a template to IRT item parameters.   

Olsen, Olsen and Smith (2010) modeled and analyzed data from an information 

technology credentialing and certification test for designing computer databases. The 

analysis is based on the Rasch, Masters partial credit and confirmatory factor analysis.  

The results of the correlation analysis within and across case clusters showed slightly 

larger correlations (0.04) within the cases than across the cases. The Master‟s partial 
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credit Rasch analysis indicated that six of the nine case clusters displayed acceptable fit 

between the empirical and modeled item response functions.  A comparison of the 

average Rasch measures at the item level and at the case group level indicated that four 

cases with individual item average Rasch measures were within measure values of 0.20 

of the case group average Rasch measures.  The unidimensional component accounted 

for approximately 25% of the variance in the item responses.  

The Role of Cognitive Task Models in Large Scale Testing 

Cognitive task modeling forms the basis for template and item development.  

Numerous items can be created from the cognitive models which are significantly cost-

effective.  Isomorphs are created efficiently and effectively in a timely manner. This is 

particularly advantageous for large scale test developers as item banks can be created 

quickly which will minimize item exposure, through test administration because larger 

pools of operational items are available for each test administration. 

   Large-scale testing companies should have at their disposal a rich collection of 

high quality items, in an attempt to keep their expenses minimal.  Cognitive task 

modeling can facilitate this process by improving item quality and guide the production 

of items with similar conceptual and statistical properties, automatically or manually 

(Bejar, 1996; Johnson & Sinharay, 2005).  More recently, research in educational 

measurement has been given significant attention directed at methods to ensure an 

adequate and secure supply of items for item pools, particularly for continuous testing 

environments (Williamson, Johnson, Sinharay & Bejar, 2002b).  
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 The systematic and strategic development approach of assessment engineering 

will greatly reduce the cost per item, since multiple instances per model are created rather 

than single instance per content specialist, and the model is continually re-used to yield 

many test items.    

As Luecht, 2012 observed: 

 
When we stop treating items as high-cost, low use commodities with a limited 
shelf life, long-term costs decline. For example, if a testing program has 
historically spent on average $300 US per item (factoring in item writing, pilot 
testing publication and processing costs), and an assessment engineering template 
costs $600 US, the latter may not seem worthwhile. However, if the controlled 
production of items for a task model templates eventually eliminates much of the 
pilot testing of items and the associated template can generate 400 items, item 
exposure risks go down by an order of magnitude and costs per item drop to $1.50 
US. (p. 34) 

 
 

The errors that are usually common in traditional item development, such as 

omissions or additions of words, phrases, or expressing as well as spelling, punctuation, 

capitalization, item structure, typeface, formatting, and language problems can be 

reduced or avoided altogether as only specific elements in the stem and options are 

manipulated across large numbers of items (Luecht, 2013).  Extensive field testing of 

items can be minimized, if not eliminated, since instances generated from the parent 

model are pre-calibrated and, thus, do not need to be field tested (Gierl, Zhou & Alves, 

2008; Zhou, 2009). 

By implementing empirically-based cognitive models of learning or assessment 

engineering item, task modeling and analysis, testing companies will be able to overcome 

fundamental problems that continue to plague them and so support inferences about 
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examinee thinking processes.  It is only by so doing, that testing companies will be able 

to create large banks of well validated items in a cost effective manner, with effective and 

efficient test assemble (National Research Council, 2001; Snow & Lohman, 1989; 

Leighton & Gierl, 2007). 

Contemporary Approaches to Test Design and Development 

Evidence Centered Design 

Evidence centered design (ECD) is an approach to test development that is based 

on the principles of evidentiary reasoning in the production and delivery of assessments 

(Mislevy, Steinberg, & Almond, 2003).  As a result of Advances in technology and 

cognitive science, ECD has evolved and made it possible to use evidence-based 

arguments or claims to describe examinees proficiency, behaviors or more complex 

performance which can validly demonstrate proficiencies which are to be included in the 

assessment (Luecht, 2013; Mislevy, Almond & Lukas, 2003).  This radical shift in the 

design models, has produced assessments that are coherent, geared towards  gathering 

complex data, from which inferences about complex students models will be ground out 

and to gauge complex learning or evaluate complex programs, built on a sound chain of 

reasoning from observation to inference (Mislevy, Almond and Lukas 2003), 

In designing the work product or task, the underlying knowledge and purposes of 

the test are of paramount importance, as specialists, test developers, statisticians, 

delivery-process developers, and interface designers all collaborate and coordinate 

together to produce a conceptual design framework for the elements of the coherent 
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assessment, at such a level of generality that a broad range of assessment types can be 

supported (Luecht, 2013; Mislevy, Almond & Lukas, 2003).   

        The main evidence centered models for design and delivery are the Conceptual 

Assessment Framework (CAF), whose models lay out the blueprinting for the operational 

elements of an assessment, and coordinates substantive, statistical and technical details. 

Thus CAF wields assessment arguments into blueprints for items and tasks, facilitated 

through the related student models, evidence models and task models (Luecht, 2013, 

Mislevy, Almond & Lukas, 2003).  The four processes delivery architecture of the 

delivery system select and administer tasks, interact with the examinee to present 

materials, capture work products and  evaluate responses from each task and 

accummulate evidence across them (Mislevy, Almond & Lukas, 2003).  Statistical 

features of items such as their difficulty are also included and governed by the evidence 

model.    

            The ECD task models also represent a families of tasks, and specify the 

environment in which the student will say, do or produce something and the 

specifications for the work product (Luecht, 2013; Mislevy; Steinberg & Russell, 1999).  

Task Models are systematically developed to manipulate the evidential and statistical 

parameters of the items in an assessment (Luecht, 2013).  Tests developers use task 

features to deliberately manipulate or change the psychometric properties of the 

assessment formats and the complexity of the tasks.  Thus task feature variables play an 

important role in determining item difficulty, characterizing proficiency and producing 
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task variants (Almond, Kim, Velasquez, & Shute, 2014).  This manipulation is important 

as it allows the task model feature or variable to share similar features and provide  

similar evidence regarding claims about the examinees to be determined by the 

assessment evidential features of the task (Mislevy; Steinberg & Almond, 1999).  

The ECD evaluation framework is related to item statistics and intended 

complexity. Parameter estimates are determined after pilot testing of items generated 

from a task model.  Item difficulty statistics are computed by fitting the IRT models to 

the data, which should generally align with items intended to assess a specific level of 

achievement or cognitive complexity (Hendrickson, Ewing, Kaliski & Huff, 2013).  

Although some variability in the item difficulty statistics for items written to a particular 

task model is usually expected. 

Among the many benefits of ECD, is that it allows for the continuous updating of 

items and parameters and attempts to drive the assessment process with the construct, 

rather than by item types (Luecht, 2013).  However, software development in which to 

execute the approach is still not developed.  In addition, there is no discussion of design 

specifications and piloting items (Luecht, 2013). 

Automatic Item Generation 

  Automatic item generation (AIG) is a process of test development, facilitated 

through the use of computer technology to generate test items.  It uses a combination of 

cognitive and psychometric theories to efficiently produce tests that contain high quality 

items created using computer technology. (Gierl & Haladyna, 2013; Embretson & Yang, 
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2007; Irvine & Kyllonen, 2002; Luecht, 2013; Gierl, Fung, Lai & Zheng, 2013). 

(Drasgow, Luecht, & Bennett, 2006).  By using a cognitive theory, or strong theory  

approach, cognitive features are identified at a small grain size or in such details that item 

features that predict test performance are specified and controlled (Gierl & Lai, 2012).    

Thus, psychometric models and computer technology developed through AIG are used 

for predicting item parameters or calibrating automatically generated items, and for 

implementing these processes (Drasgow, Luecht, & Bennett, 2006).   

Modeling the difficulty based on the features of the items, can be accomplished 

using scale-up, which creates item templates or prototypes with slots that can be filled 

with exemplars of features, known to elicit particular knowledge and skills in examinees.   

Such item templates would be expected to allow the on-the-fly generation of many varied 

items with predictable properties (Glas & van der Linden, 2001; Sinharay & Johnson, 

2008).   

Test development specialists identify the content, design and create item models, 

templates or prototypes that highlight the features or elements in the assessment task.  

The item model elements are then manipulated to generate new items through the use of 

computer-based algorithms. Thus thousands of new high-quality items can be produced 

from a single item model, in a short period of time (Gierl & Haladyna, 2013). 

    According to Drasgow, Luecht and Bennett, (2006), in describing the AIG 

process, the determinants of item difficulty must also be clearly understood so that each 

of the generated instances will not need to be calibrated individually.  Item parameter 
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estimates such as the difficulty parameter can be accurately predicted using underlying 

item-generative rules.  This allows for items that are generated based on the same set of  

rules to have the same psychometric characteristics.  These isomorphic items contain 

comparable content and are exchangeable psychometrically.  Hence, the properties that  

makes an item difficult or easy and what construct the item is supposed to be measuring 

are clearly understood (Luecht, 2013).  

Item statistics such as the item difficulty parameter estimates can be obtained by 

pilot testing items as part of an operational test administration, with a small sample of 

examinees or alternatively, by accounting for the variation among the generated items in 

an item model and, using this information, to estimate item difficulty with a statistical 

procedure (Drasgow, Luecht and Bennett, 2006).  Statistical procedures used to calibrate 

the item parameters without the need for extensive field or pilot testing includes the linear 

logistic test model (Fischer, 1973; Embretson & Daniel, 2008), the 2PL-constrained 

model (Embretson, 1999), the hierarchical IRT model (Glas & van der Linden, 2003), the 

Bayesian hierarchical model (Sinharay & Johnson, 2005; Sinharay, Johnson, & 

Williamson, 2003), the expected response function approach (Mislevy, Wingersky, & 

Sheehan, 1994), and, the linear item cloning model (Geerlings, van der Linden, & Glas, 

2011).  

     Although items that are automatically generated from the same parent model can 

vary significantly in terms of their psychometric properties.  However, items can also be 

created with almost identical difficulty parameter estimates, or within an item pool with a 

wide range of item difficulty (Bejar, 1993).      
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       Automatic item generation has many potential benefits, which include more 

targeted specification sources and levels of item difficulty and the production of large  

item banks, which improve cost effectiveness and to generate additional items with good 

psychometric properties automatically (Luecht,2013; Gierl & Haladyna, 2013). 

Evaluating Sources of Item Difficulty Scales 

Cognitive Task Model Item Difficulty 

Item difficulty in assessment engineering is accomplished through an iterative 

process, and takes into account a list of cognitive processes or skills that can be evaluated 

statistically and iteratively.  Item difficulty is a property of both the item and the 

examinee, and results from the interaction between the respondents and the item.  Gorin, 

(2006) noted that both the respondents and their response time are observable entities that 

can be statistically evaluated.   

Embretson and Daniel (2008) applied the Linear Logistic Latent Trait Model 

(LLTM) to operational test items, in order to understand their sources of 

complexity/difficulty.  The results showed that the LLTM approach supports the validity 

of the cognitive model, and accounted for about half the variance of item difficulty.   The 

level of prediction associated with the model was sufficient in selecting items for 

operational use without further tryout or pretesting (Embretson and Daniel, 2008).   

Among the advantages associated with the LLTM is that construct validity at the 

item level is established Messick (1995).  As in cognitive task modeling, validity is 

supported when the cognitive complexity features are built into the items in the test 
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design stage and is empirically supported as predicting item psychometric properties, 

such as item difficulty.   In addition, items with different sources of cognitive complexity 

were generated by varying item features systematically, based on the cognitive model.  

This can also be accomplished through computer programs which can generate large 

numbers of items with predictable psychometric properties (Embretson, 1999; Adrensay,  

Sommer, Gittler & Hergovich, 2006; Luecht, 2013).    Finally, score interpretations can 

also be linked to expectations about an examinee’s performance. As with the Rasch 

Model, item psychometric properties and ability are measured on a common scale, hence, 

expectations that the examinee solves items with particular psychometric properties can 

be given.  

Gorin, (2005) also investigated the Linear Logistic Latent Trait Model (LLTM; 

Fischer, 1973) parameter estimates of experimentally manipulated items in order to verify 

the impact of encoding and decision processes on item difficulty. The results indicated 

that manipulation of some passage features, such as increased use of negative wording, 

significantly increases item difficulty in some cases, while altering the order of 

information presentation in a passage, did not significantly affect item difficulty.  

Item Difficulty Modeling 

Item difficulty modeling is facilitated in assessment engineering through it 

cognitive task modeling process.  Task model grammars make it possible to 

systematically describe the features of items and their relationship with difficulty.  The 

task model grammars are the fundamentals on which the cognitive task model component 

that affect changes in item difficulty are built. Thus task models incorporate all the 
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features that contribute to difficulty and represent the cognitive sources of difficulty of 

the items.  Through the use of reverse assessment engineering, multiple choice items 

from two large scale assessments were cognitively decomposed using specific guidelines  

in order to arrive at the item difficulty.   The difficulty component could be manipulated 

through an iterative process in order to exert some control over the difficulty in order to 

produce reliable and valid difficulty estimates. Research conducted by Gorin & 

Embretson (2006) identified features of paragraph comprehension items found in the 

Graduate Record Exam (GRE) that were responsible for changes in item difficulty.  The 

modeled relationship between the features that contribute to item difficulty and how they 

relate to the model was captured in a simple regression equation. 

Item difficulty models can be tested by defining the observable features of an item 

that can be systematically coded and entered into statistical analyses.   The level of these 

features determine the portion of processing complexity that should drive the difficulty 

level of the item.  Applications of the difficulty model to reading comprehension items 

from standardized achievement tests explained between 35%  to 72% of the variance in 

item difficulties (Embretson & Wetzel, 1987a; Gorin & Embretson, 2006). The difficulty 

modeling process is often iterative as item features are added to or removed from the 

difficulty model based on their contribution to the explanatory power of the model.  

Item Mapping 

Item mapping is a strategy used to identify and describe what students at specified 

levels of achievement know and are able to do.  It has been widely used in educational 

assessment in areas of standard setting (Wang, Wiser & Newman, 2001; Wang, 2003), 
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scale anchoring (eg., Gomez, Nash, Schedl, Wright, & Yolkut 2006), and score reporting 

(e.g., Kirsch, Jungeblut, Jenkins & Kolstad, 1993; Hambleton, 1997).  Item mapping is 

achieved when there is a high degree of ‘alignment’, which Webb (1999) defined as 

“the degree to which expectations and assessment are in agreement and serve in 

conjunction with one another to guide the system towards student learning what they are 

supposed to know and do” (p. 4).  

By Item mapping in assessment engineering is accomplish through its cognitive 

task models, which outlines what students know and are able to do, in terms of 

determining the knowledge and skills that students possess.  This takes student’s 

performance into alignment by requiring a clear definition of what students know and can 

do as evidenced by their actual performance.  Task models locates items along the test 

score scale, based on specific criteria outlined by subject matter experts.  The IRT Rasch 

models used in item mapping have student achievement levels and item difficulties on the 

same scale. Thus allows for items within the examinee’s proficiency level along the test 

score scale to be identified. Hence, having located the items, SMEs can describe in detail, 

the knowledge and skills required for examinees along the score scale to demonstrate in 

order to give correct responses to these items. Thus differences in accomplishment or 

mastery of students at different performance levels across the score scale can be 

identified.   In determination the performance levels and their descriptions, the content 

being assessed in the test and inferences to be drawn from the scores must be considered. 
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Scale Anchoring 

Beaton and Allen (1992) describes scale anchoring as statistically using specific 

characteristics of items to distinguish between successive points along the proficiency  

scale, and traditionally when subject matter experts use specific items to provide an 

interpretation of what students at or close to selected scale points know and can do. 

Assessment engineering through cognitive task modeling accomplishes scale 

anchoring by providing explicit descriptive information of what students can or cannot 

do.  This is done by subject matter experts and test developers. Anchoring the scale 

allows the items to stay in position.  In addition, it provides an understanding and 

interpretation of what students at various specific anchor points along the scale know and 

can do based on their responses.  In the anchoring process, because examinees located at 

high score levels generally know and can do more than those located at lower levels, 

items are examined to see how well they differentiates between successive anchor points. 

The items are reviewed between adjacent anchor points to see whether or not the specific 

tasks can be generalized to describe the level of proficiency at the anchor points.  Two 

approaches to scale anchoring, identified are the direct method and the smoothing 

method.  These are facilitated through assessment engineering cognitive task modeling 

and assume that a scale can be generated, either by traditional psychometric or item 

response theory (IRT) methods. Results of study on Scale anchoring are used to further 

inform educational experts about what students have learned, and to statistically identify 

items of interest that provides data for experts to consider and the implications of the 

identified items (Beaton and Allen, 1992).  
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Cognitive Task Analysis 

Cognitive task analysis (CTA) relates to understanding the different cognitive 

processes and skills that are required in order to perform a specific tasks. It involves  

mapping of the task, identifying the critical decision points, clustering, linking, and 

prioritizing them, and characterizing the strategies used (Klein, 1998). 

Cognitive task analysis is conducted in assessment engineering through its 

cognitive task models where the task performance are captured in detail.  It outlines the 

cognitive knowledge and processes that must be expended by the examinee in order to 

achieve the required performance. Subject matter experts are involved in providing 

extensive descriptions, which allows them to develop and analyze the tasks effectively.  

Detailed information about the procedural and declarative knowledge, thought processes 

and goal structures that underlie observable task performance are given.  According to 

Chipman, Schraagen, & Shalin, (2000), it captures information about both overt 

observable behavior and the covert cognitive functions behind it in order to form an 

integrated whole. Some of the methods used for conducting a cognitive task analysis are 

the Applied Cognitive Task Analysis (ACTA), the Critical Decision Method (CDM), 

Skill-Based CTA Framework, Task-Knowledge Structures (TKS), Hierarchical Task 

Analysis and the Cognitive Function Model (CFM) (Clark, Feldon, van Merriënboer, 

Yates & Early (2006).   

  Cognitive Task Analysis in assessment engineering is also performed a priori, 

before the design of instruction and/or tests. The descriptions are then used to develop 

expert systems, tests to certify job or task competence, and training for acquiring new and 
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complex knowledge for attainment of performance goals (Chipman, Schraagen, & Shalin, 

2000; Jonassen, Tessmer, & Hannum, 1999). 

The Role of Validity in Assessment Engineering 

The validity of score interpretation, use and consequences play an important role 

in assessment engineering.  It provides the basis for investigating Kane’s (2013)  

Interpretive Use Argument, which specifies the proposed interpretations and uses of the 

test scores.  This can be accomplished firstly through the fundamental processes of 

construct mapping and evidence modeling which specifies claims that form the basis for 

creating cognitive task models.  The claims, which ultimately produce scores or evidence 

about examinees performances are clearly stated to support score-based interpretation.   

In developing the assessments, the purpose, which according to Bachman & Palmer, 

(2010), guides the development of both the test and the Interpretive Use Argument is 

given primacy.  

        Secondly the different item types generated, from templates provide vital scorable 

useful information (Luecht, 2013).  Through the different controls and attributes used in 

item selection, different statistical models such as IRT model are used to summarize the 

relationships between test taker ability, as indicated by performance on a sample of items, 

and expected performance on other items that also fit the model, from which item 

parameters are known (Zumbo, 2007). Under the argument-based approach to validation, 

generalizability of almost all test score interpretations is vital as almost all of these 

interpretations involve generalization over some universe of generalization that goes 

beyond the observations actually made (Kane, 2013). 
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The validation of a proposed interpretation must be evaluated for coherence, 

clarity, plausibility and completeness of the IUA, in addition to the evaluation of the  

plausibility of its inferences and assumptions.  Assessment engineering cognitive task 

modeling is an iterative process which allows for modifications to be made to the design 

process.  During the developmental process, modifications are made to the test design so 

that the IUA becomes more specific. Modifications are made to resolve any 

discrepancies, through the iterative process of development and revision which continues 

until the fit between the test and IUA is acceptable (Kane, 2013).  Mislevy (2009), coined 

the term “assessment design argument” to emphasize the design choices that must be 

made during test development, all of which are influenced by the proposed interpretation 

and use.  

Construct validity is supported when extensive descriptions are given through the 

cognitive task models of the cognitive processes and hypothesized relationships among 

these processes that can provide a stronger foundation for test development and score 

interpretation (Embretson, 1994; Mislevy, 1994; Messick, 1995).  Ferrara and DeMauro 

(2006) further suggest that specifications of content and procedural knowledge, having a 

measurement plan describing the nature of the assessment tasks, and hypotheses and 

evidence of the nomological network of the construct should also be included.  Thus 

when the processes measured by items and tests are those that were intended by the 

researcher, construct validity can be achieved (Gorin, 2005). 
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CHAPTER III 

METHODOLOGY 

 
The Methodology Chapter is presented in four sections: (a) Reversed Assessment 

Engineering Cognitive Task Model Grammar Development; (b) Cognitive Task Model 

Derived Difficulty (c) Statistical Analysis of Empirical Data and (d) Analyses of 

Cognitive Task Models. 

Reversed Assessment Engineering Cognitive Task Model Grammar Development 

  Reverse engineering cognitive task models are developed by decomposing 

existing operational items that have been administered to examinees, from two 

nationally-based large scale examinations.  A similar process was used by Luecht, Burke 

& Devore (2009) to build cognitive task models for a Complex Computer-Based 

Performance Exercises.  For purposes of this research, the Advanced Placement (AP) 

English Language and Composition and the Calculus BC examinations, are used. The 

instrument for the Calculus BC consists of forty-five multiple choice questions.  The 

English language and composition assessment, has fifty-four multiple choice items.  Both 

the Calculus BC and English Language and Composition exercises will be subjected to a 

type of cognitive analysis, in which all of the items will be reverse engineered in order to 

generate plausible cognitive task models for each task.  
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The reverse engineering cognitive task models process begins by creating a list of 

relevant task model grammars or action verbs that are subject specific.    The task model 

grammars (TMG’S) describes the procedural skills and actions that will be manipulated 

by the examinee to provide evidence about their expected performance at specific regions 

of the construct map.    

Having built a list of all plausible action verbs, the type of skills associated with 

each verb is explicitly, meaningfully and unambiguously defined. This is important to 

ensure that each verb always represents the same constellation of skills across tasks 

associated with the particular construct, and that they maintain their relative difficulty 

along the scale (Luecht, 2013).  

 The action verbs are then ranked and categorized into groups labelled low (1), 

medium (2), and high (3) based on their level of apparent cognitive complexity of the 

skills contained in each action verb or the task model grammar complexity design 

components.  For example the action verb ‘Identify’ is classified as  ‘easy’ , given a 

rating of ‘1’, whereas the action verb ‘Interpret’ is considered to embody moderate 

cognitive skill description, and ‘Evaluate’  is of a more complex description and given a 

rating of ‘3’ (See Appendix A).    

 After the action verbs have been defined and categorized, they are meticulously 

reviewed by the small group of SME’s, in order to ensure that their position and 

categorizations along the scale was plausible and fixed.  They then form the basis for 

developing the cognitive task models.  
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The next step involves the development of task descriptive statements. These 

statements describes each task in terms of the required actions of the, the amount and 

type of data or information that is being manipulated or used and information related to 

the context and features of the task that might affect item difficulty. The task descriptions 

are also suggestive of the complexity of each task and the complexity of the information 

being used/manipulated by the examinees to complete each task (Luecht, Burke & 

Devore, 2009).   The relevant cognitive task model grammars or action verbs are 

contained in these task descriptive statements.  Each descriptive statement was given a 

difficulty rating that is representative of the level of cognitive complexity of the various 

required actions and skills contained in each task.    In order to ascertain the difficulty of 

the items, the SME’s used a criteria that gave consideration to the explicitness and 

implicitness of the relations among the stem, the key and the distractors; the semantics 

and syntactic features such as vocabulary represented in the task or passage; the number 

of unknowns; the number of steps or count of actions; the information density and the 

context complexity of the tasks.  The difficulty/complexity value so obtained will 

represent the cognitive complexity of the various actions that will be deduced from the 

task model grammars.   
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Table 3.1  

Subject Matter Experts Task Descriptive Statements for Calculus. 

Task Descriptive Statements Perceived 
Difficulty 

Recognize geometric sequence│Apply formula for geometric 
sum│Compute sum│Simplify fraction 

Moderate 

Recognize implicit equation│Calculate derivative 
implicitly│Substitute pair│Simplify│Use point slope 

Moderate 

Rewrite structure│Apply basic rules for derivatives Easy 

Apply definition of absolute value│Re-draw graph│Calculate area Moderate 

Recognize separable diferential equation│apply rules for 
exponent│Apply rules for integration│Substitute condition to 
solve│Solve equation 

Hard 

 
 

The entire task modeling process is facilitated by Subject Matter Experts (SME’s) 

or Content Specialists, who meticulously evaluate the cognitive skills that will be needed 

by the examinee to solve each task correctly, and so determine the level of difficulty, and 

rate the items according to the features or skills that are associated with the task. For this 

research a small group of two SME’s were used.   

Computation of Cognitive Task Model Difficulty Score 

Generally, in order to compute the cognitive task model difficulty score,  the task 

model coding schema and scoring indices are done in which task model and difficulty 

indices are generated and the coding/scoring of the tasks for cognitive task complexity 

information density and context complexity must be iteratively created and computed. 

The coding schemes and scoring indices will be used to classify each task in terms 

of three cognitive analysis framework, which are, the required task actions, information  
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density and context complexity.  The coding process for the English and Composition 

included encoding linguistic features of the task including semantic and syntactic features 

such as vocabulary and propositional density of the passage.  The calculus encoding 

system followed similar processes of reasoning levels, vocabulary and computation.  

First, the required task actions represents the cognitive complexity of the various actions 

that were extrapolated from the SME’s task descriptive statements.  The 

difficulty/complexity value is a simple index of apparent cognitive complexity/difficulty 

given the features of the task where 1=easy/simple, 2=medium and 3=difficulty/complex. 

Second, the information density represents how dense the material is that is 

included in each tack.  Scoring specific information on each task is also taken into 

consideration in deriving the classifications.  The difficulty/complexity index here 

represents the different levels of information that must be managed by the examinee, 

where ‘1’ for example, reflects relatively simple, uncomplicated entries, values and ‘3’ 

represents complex sets of features or a system of values to be analyzed.  Finally, the 

lower section shows the complexity of the tasks context, ranging from 1=simple to 

3=complex. 

The coding/scoring of the tasks uses assigned difficulty/complexity scores 

following a series of four iterative steps.  The four ratings are the average task 

complexity, count of actions, information density and context complexity.  The following 

equation is representative of the process 
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bij = β1i ATC × β2i COA × β3i ID × β4i CC 
 
 

Where ATC is average task complexity, COA is Count of actions, ID is information 

density and context complexity. 

The average cognitive task complexity is computed by averaging the ratings of 

the action verbs that were extracted from the SME task descriptive statements across all 

measurement opportunities of the skills required to complete each task.   

The required actions is representative of the various actions embedded in the tasks 

and extrapolated from the action verbs or the task descriptive statements.  The scores or 

measurement opportunity awarded to each item will also be taken into consideration.  

The count of actions or apparent steps needed to complete each task, gives the total 

number of actions that the examinee must take in order to respond correctly to an item. 

The information density value represents the different levels of information that 

must be managed by the examinee.  The levels of information range from simple to 

complex sets of operating systems or values to be analyzed by the examinee.  The scores 

or measurement opportunity awarded to each item will also be taken into consideration.   

The final coding deals with the context complexity of each task.  The context 

complexity is computed judging from the context in which the examinee has to work.  

Whether there are context clues etc.  

The complexity score is computed by multiplying the four previous rating values 

of the average task complexity, count of actions, information density and context 

complexity together. This computed value is essentially a predicted item difficulty or  
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complexity parameters.   The complexity scores have the effect of positioning each task 

model in a multidimensional cognitive complexity space.  The higher the complexity 

score, the more complex the item. This Coding scheme replaces formal predicate calculus 

statements (See Appendix C)  

The multiplicative formula used in calculating the derived task model difficulty, 

the product of the independent variable or predictive components, conceptually allows 

these components to be interconnected after centering or standardizing the values.  Hence 

the likelihood of having several independent variables together is increased.  This greatly 

expands the understanding of the relationships to the dependent variable in the model.   

            A difficulty/complexity index score was next computed.  This score was used to 

re-score the examinees.  It is computed by multiplying the average cognitive task 

complexity by the count of actions.  The average cognitive task complexity and count of 

actions are previously computed as indicated above by averaging the ratings of the action 

verbs that were extracted from the SME task descriptive statements and the count of steps 

needed to complete each task.  This computed value is essentially a predicted item 

difficulty and represents the overall cognitive complexity of each task.  This limits the 

number of dimension to three.   

Psychometric Analysis of Empirical Data 

The empirical response data, is statistically calibrated in order to generate item parameter 

estimates for each item using the Rasch model computed in Winsteps.  The Rasch model 

is represented mathematically as:  



www.manaraa.com

56 
 

ሼܺ௡௜ݎܲ ൌ 1ሽ ൌ
݁ఉ೙ିఋ೔

1 ൅ ݁ఉ೙ିఋ೔
 

 
Where ߚ௡represents the ability of person n, and ߜ௜ represents the difficulty of item i.   

The resulting ‘b’ parameter estimates will be categorized into three pre-determined 

groups, based on the computed level of the item ‘b’ parameter estimates.    

Analysis of Cognitive Task Models 

After the cognitive task mode derived difficulty for each of the items is computed, 

the anchor calibration of the cognitive task models is done in which the task model 

derived difficulties is subjected to several iterations in order to compute the Pearson 

Product Moment Correlations Coefficient and allow for comparisons to the empirical 

parameter estimates.  The anchor calibrations involves centering or standardizing the ‘b’ 

parameter estimates and then running the anchor calibration.  The fixed task model 

difficulty is then anchored and calibrations are done with the new data and comparisons 

made relative to the empirical estimates.    

   The Rasch model is used to test how well the model fits the data to ascertain the 

goodness-of-fit of the data to the model using the Chi-square statistic (χ2)  which 

analyzes the fit of the cognitive task model and the Rasch model using both Infit and 

Outfit statistics computed in Winsteps.  The Infit, which is sensitive to misfit of items 

well-matched to examinee proficiency, and the Outfit, sensitive to outliers or items 

located further away from examinees proficiency are computed and compared.  Both the 

Infit and the Outfit have expected values of 1.0.  Values of between .7 and 1.30 are  
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considered, to be “acceptable.”   Of the two statistics, Infit is generally considered to be 

more relevant since it signals potential misfit for those items best suited for an examinee 

at a particular proficiency level.  The standard deviation of the mean square infit and 

outfit will be examined and compared.  This research proposal addresses two research 

questions. 

Statistical Analysis 

 
1. To what extent can AE cognitive task model derived ‘b’ parameter estimates be 

compared to empirical Rasch Model ‘b’ parameter statistics? 

This research question is based on the premise that cognitive task model derived 

difficulty indices should yield comparable ‘b’ parameter estimates as the empirical 

statistics.  Using the Rasch model, to calibrate all of the examinee response data in order 

to estimate the difficulty parameters of each item.  Cognitive task models for the 

calibrated items with empirical difficulties following different categorizations are created.  

The empirical difficulties estimates will be regressed unto the task model difficulty 

design components.  Comparison of parameter estimates will then be made of: (a) 

Difficulty parameter estimates based directly from empirical response data; (b) difficulty 

parameter estimates computed from the task models following several modifications in 

order to cross validate the task models.  

  Other statistics that will be computed are the Pearson Product moment correlation, 

to analyze the correlation between the assessment engineering task-model and the 

empirical difficulties; R-square; and the standard errors.  
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If the cognitively derived task models difficulty yield similar results as the 

empirical estimates, then the potential exists for assessment engineering to greatly impact 

the need for large examinee samples for item calibration. This may be feasible since 

assessment engineering is based directly on intentional and principled designs (Luecht, 

2012).  Thus, if a task model difficulty estimate can be used for all items generated within 

the task model family it is no longer necessary to pretest every item and a natural quality 

control mechanism of managing variation within task model is possible.    

2. Can AE cognitive task model derived difficulty estimates replace the Rasch Model ‘b’ 

parameter estimates in scoring examinees?  

This research question seeks to examine the impact and potential utility of using 

the task model logically derived difficulty estimates to estimate examinees thetas.  The 

person proficiency estimates will be computed using estimates of each item difficulty 

based on the empirical response data and derived task models complexity scores.   

The examinee’s theta estimates will be computed using the Rasch Model in 

Winsteps.  The examinees response data is rescored, based on the overall cognitive task 

model complexity parameters.  Theta estimates are computed and compared.  With the 

Rasch model, both the person ability and the item difficulty are on the same logit scale, 

and gives an indication if items on the assessments were targeted very well to the 

examinee population who took the tests.    These analyses will also give an indication as 

to whether there is any difference in scoring examinees empirically or with the task 

model complexity index scores.    
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CHAPTER IV 
 

RESULTS 
 
 

This research dissertation was designed to investigate whether Assessment 

Engineering cognitive task model derived difficulty parameters is comparable to the 

empirical Rasch model difficulty parameter estimates, using data from two large-scale 

assessments.  In addition, this research seeks to examine the extent to which cognitive 

task model parameters estimates could be used to score examinee’s data.  The analyses 

intend to obtain answers to two research questions: (1) To what extent can cognitively 

derived task model difficulty parameters be compared to empirically based ‘b’ parameter 

estimates?  (2) Can AE cognitive task model derived difficulty estimates replace the 

Rasch Model ‘b’ parameter estimates in scoring examinees?  

Organizationally the results are presented in four sections (a) Computation of 

difficulty parameters (b) correlation and r-squared evaluation (c) evaluation of model fit 

and (d) the impact of cognitive task modelling on examinee proficiency scores.  

Importantly, the ‘b’ parameters of the cognitive task models are known a-priori and this 

allows for the manipulations of the test design structure, which can directly influence the 

difficulty parameters.  Essentially, if the cognitive task model derived difficulties 

matches the Rasch model, it provides substantial evidence in support of continued 

research and the viability of generating thousands of items without the use of pretesting
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and data hungry psychometric models.  The benefits and implications to educational 

testing organizations are immeasurable.    

Computation of Difficulty Parameter Estimates 

The empirical Rasch model difficulty parameter estimates were calibrated using 

Winsteps (Linacre, 2009).   Winsteps was also used to compute the fit indices and the 

examinees proficiency scores.   Formal task model grammars, which concretely describe 

the knowledge and skills contained in the tasks, were used as the foundation for 

developing the task model coding scheme and coding indices, created to represent the 

cognitive complexity of the required actions, for which a difficulty/complexity value was 

assigned.  Next the information density or complexity of the materials included in each 

task, representing the levels of information managed by the examinee and finally the 

complexity of the context.   The cognitive task models complexity scores were computed 

by multiplying the average cognitive task complexity, the count of actions, the 

information density and the context complexity.  The following equation represents the 

process  

 
bij = β1i ATC × β2i COA × β3i ID × β4i CC 

     
                   
Where AC,is average task complexity, COA, Count of actions, ID is information density 

and CC is context complexity.  Anchor calibrations are then performed. 
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Finally, the cognitive complexity index score, used to compute the proficiency 

scores, were computed by multiplying the values of the average cognitive task 

complexity by the number of actions.  Anchor calibrations are then performed. 

Relationship between Cognitive Task Model and Empirical Difficulty Parameter 

Correlation and R-squared Evaluation 

 
Table 4.1 
 
Correlation and R-Squared between Task Model and Empirical Difficulty  

Assessments  Variables                     R 
                 

                    
       
   

English 2012 Task Model  
 Empirical 0.891 0.794 

  
English 2013 Task Model  
  Empirical 0.854 0.729 

  
  Calculus 2012 Task Model 

 Empirical 0.886 0.785 
  

Calculus 2013 Task Model  
 Empirical 0.831 0.691 
          

Correlation significance level is .001 
 
 
             Table 4.1 shows the Pearson Product Moment Correlations Coefficients and the 

R-Squared statistics for the cognitive task models and the empirical estimates for English 

Language and Calculus.  The results indicate significantly (p=.001) positive correlational 

relationships between the empirical difficulties and the task models complexity scores.   
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The largest correlations is English 2012 (r=0.891) and the smallest Calculus 2013, (r= 

.831). 

The R-Squared values suggest that the model accounts for approximately 70% of 

the proportion of the variance for all assessments.  The subject with the largest proportion 

of explained variance is English 2012, ݎଶ.794 and the smallest, Calculus 2013, ݎଶ.691  

 

                

                                               English 2012                                               English 2013 
 

Figure 4.1 Scatterplot of Item Difficulty Estimates for Empirical and Cognitive Task       
Model for English Language. 
 
 
       The scatterplots of item difficulty parameters shown in Figure 4.1 indicate a 

positive correlational relationship between the empirical difficulty and the  
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cognitive task model complexity scores.  Thus the empirical difficulty and the task 

model are highly correlated, as most of the parameter difficulty scores align 

relatively close to the trend line, indicating a general ordering of parameter 

estimates.  

 

                                                    

                                           Calculus 2012                                            Calculus 2013 

Figure 4.2   Scatterplot of Difficulty Estimates for Empirical and Cognitive Task Model 
for Calculus. 
 
 
           The scatterplot in Figure 4 depicts a positive relationship between the empirical 

difficulty and the cognitive task model difficulty complexity scores.  The task-model 

difficulty complexity measures for the Calculus is more varied, however, despite the 

slight difference the impact on scores differentials is still negligible.  The task model  
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composite difficulties was able to perform in a similar manner as the empirical 

difficulties as it relates to rank ordering the examinees as shown in Figure 5. 

Rasch Model Fit of Task Model and Empirical Difficulties for English Language 
2012 

 
 Chi Square statistics are useful for quantifying the fit of the data to the Rasch 

Model.  Model fit is a statistical procedure used for model validation, and summarizes the 

discrepancy between observed values and the values expected under the model (Wright & 

Stone, 1979).   Winsteps (Linacre, 2009) computes two fit statistics as part of its 

calibration process.  They are Infit and Outfit (Wright & Stone, 1979).  Mean Square 

Outfit is the sum of squared standardized residuals, and is outlier sensitive, that is, it is 

more sensitive to unexpected observations by persons on items that are relatively very 

easy or very hard.  Mean Square Infit equals the sum of information-weighted mean 

square. It is sensitive to inlier-pattern or to unexpected patterns of responses, targeted 

near the person’s ability.  Of the two statistics, Infit is more relevant as it indicates 

potential misfit for items best suited for an examinee at a particular proficiency level.  

The expected values of the mean-square Infit and Outfit statistics are 1.0. Values between 

.7 and 1.30 are generally acceptable.   

Table 4.3 summarizes the model fit results for the cognitive task model and the 

empirical Rasch difficulties.   
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Table 4.2 

Summary Statistics across Items for Empirical and Cognitive Task Model for English 
Language 2012.       
 

                    
Variables N MEAN      SD MAX  MIN 

   
Empirical MS INFIT 55 1.00 0.08 1.20 0.85 

 
MS 
OUTFIT 

55 0.99 0.15 1.26 0.68 

       SE 55 0.05 0.01 0.09 0.05 
   

              
Task 
Model 

MS INFIT 55 1.05 0.22 1.78 0.49 

 
MS 
OUTFIT 

55 1.08 0.31 2.15 0.37 

 SE 55 0.05 0.01 0.06 0.05 
              

   
 
 Table 4.2 shows that the MS Infit and MS Outfit fit statistics  for the empirical 

Rasch model parameters are close to or equal to 1.0 and within the acceptable range.  The 

MS Infit and MS Outfit values for the cognitive task model exceed 1.0, signaling that 

there are some random` noise in the data not modelled in the empirical. The higher 

standard deviation for the task models indicate a much wider variability in scores around 

the mean, than the empirical.  The maximum and minimum scores for the empirical are 

within acceptable ranges, while those of the cognitive task models are outside, suggesting 

misfits in the data.  All items for the empirical measure fit the expectations of the Rasch 

model. 
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Generally, the model standard error (SE) values for both the empirical and the 

task model parameter estimates are small and nearly identical. This indicates that the 

models have small amounts of error associated with the estimates of item model fit.  

  
Table 4.3 
 
Summary Statistics across Persons for Empirical and Cognitive Task Model for English 
Language 2012.   
     
              
Variables N MEAN        SD MAX  MIN 

    

Empirical 
MS 
INFIT 

2172 1.00 0.11 1.47 0.69 

 
MS 
OUTFIT 

2172 0.99 0.25 4.73 0.42 

 SE 2172 0.35 0.09 1.02 0.3 
          

    
Task 
Model 

MS 
INFIT 

2172 1.06 0.13 1.5 0.67 

 
MS 
OUTFIT 

2172 1.08 0.26 2.92 0.35 

 SE 2172 0.35 0.09 1.03 0.30 
              

 
 
            According to Table 4.3, the MS Infit and MS Outfit for the 2172 examinees, for 

the cognitive task model exceed 1.0 indicating person misfits.  The empirical values are 

within the acceptable range. The standard deviation values for both the cognitive task 

model and the empirical are relatively close and indicate a wide distribution in persons 

along the scale.  The maximum MS Outfit and MS Infit values for both the task model 

and the empirical are very high, suggesting large misfits in persons in the data.  The  
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minimum values are within the acceptable range.   Generally, all items for the empirical 

measure fit the expectations of the Rasch model.   

             The standard error (SE) values for both the empirical and the task model person 

measures are relatively small, indicating that there are some noise associated with the 

precision of the person estimates of the models.   

 

 
 
Figure 4.3 Scatterplot of Misfitting MS Outfit Items for Empirical and Cognitive 
Task Model for English Language 2012. 
 
  

The scatterplot in Figure 4.3, shows that the main outliers for the cognitive task 

model are items,  35, 1, 21, 14, 39, 41, 44, 10 and 45, with very high or very low MS 

Oufit values.  All of the MS Outfit values for the empirical are within acceptable ranges.   
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Figure 4.4 Scatterplot of Misfitting MS Infit Items for Empirical and Cognitive 
Task Model for English Language 2012.  
 
 
 According to Figure 4.4, the most misfitting items with extreme MS Infit values 

for the cognitive task model are 45, 10, 44 and 41, highlighted in the scatterplot above.  

All of the MS Infit values for the empirical are within acceptable ranges.   
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Table 4.4 
 
Summary Statistics of Misfitting items for English Language 2012. 
 

        
Items P Value MS Infit MS Outfit 

10 0.69 1.47 1.81 
20 0.58 1.15 1.31 
22 0.51 1.2 1.35 
24 0.48 1.26 1.35 
30 0.7 1.13 1.35 
40 0.56 1.16 1.34 
41 0.66 1.48 1.54 
44 0.33 1.36 1.58 
45 0.41 1.78 2.15 

   
 

Table 4.4 shows the 9 cognitive task model misfitting items with high and 

extreme MS Infit and MS Outfit values, which exceed 1.30 and are outside of the 

acceptable range.   There are four items with high MS Infit values. These items have p-

values ranging from .69 to .33. 
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Description of Misfitting Item for English Language 2012 
 
 

 

Figure 4.5 Empirical Conditional Mean Scores and Expected Response Function Item10. 
 
 
  Figure 4.5 shows the expected response function and the task model difficulty 

conditional on the empirical scores for item 10.  The examinees are generally tracking the 

model line, however misfit is apparent in the upper regions of the scale at approximately 

+3.5 logits, where high performing examinees were unexpectedly scoring this item 

incorrectly.   

These appear to be random examinees, as the most misfitting persons and those 

with the most misfitting responses were different from those with the most unexpected 

responses.  The proportion of examinees to score this item correctly is 69%.    
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Figure 4.6 Empirical Conditional Mean Scores and Expected Response Function Item 20. 
 
 

Figure 4.6 shows the expected response function and the task model difficulty 

conditional on the empirical scores for item 20.  The examinees are roughly tracking the 

model line. In this figure, the misfit is apparent in the upper regions of the scale at 

approximately 2.8 logits, where high performing examinees predicted to score this item 

correctly were unexpectedly scoring it incorrectly.  Some of the most misfitting 

examinees, with the most misfitting response strings also had the most unexpected 

responses to this item, while others were random examinees.   The error may have been 

due to careless mistakes.  58% of examinees scored this item correctly.   
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Figure 4.7 Empirical Conditional Mean Scores and Expected Response Function Item 22. 
 
 
             Figure 4.7 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores for item 22.  The misfit is pronounced in 

the upper regions of the scale, above +1.0 logits where high performing examinees are 

expectedly scoring this item incorrectly.  These appear to be random examinees scoring 

this item incorrectly.  Some of these were the most misfitting persons, with the most 

misfitting response string and gave the most unexpected responses to the item.  However, 

most were random examinees.  This suggest that persons were making careless mistakes.  

The proportion who scored correctly is 51%.   
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Figure 4.8 Empirical Conditional Mean Scores and Expected Response Function Item 24. 
 
 

Figure 4.8 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores for item 11.  The misfit is pronounced at the 

upper regions of the scale at approximately 2.5 logits and above, where high performing 

examinees are unexpectedly scoring this item incorrectly.  Misfit is also evident at -0.2 

logits where examinees were unexpectedly scoring this item correctly, who were 

predicted to score it incorrectly.  Overall, these were random examinees scoring this item 

as the most misfitting examinees, with the most misfitting response strings, who gave the 

most unexpected responses were different.  This item is not differentiating between high 

and low performers.  Approximately 48% of examinees scored correctly on this item.   
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Figure 4.9 Empirical Conditional Mean Scores and Expected Response Function Item 30. 
 
 

Figure 4.9 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores for item 30.  The misfit is pronounced in 

the upper regions of the logit scale, at approximately +1.0 and +3.5 logits, where high 

performing examinees are unexpectedly scoring this item incorrectly.   Misfit is also 

evident in the lower regions of the logit scale at approximately -1.0 logits, where low 

performing examinees are unexpectedly scoring the item correctly.  The same examinees 

who were the most misfitting, also give the most misfitting responses, but not the most 

unexpected responses.   70% of examinees scored this item correctly.  
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Figure 4.10 Empirical Conditional Mean Scores and Expected Response Function Item 
40. 
 
 

Figure 4.10 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores for item 40.  The misfit is evident in the 

upper regions of the scale at about +2.3 logits, where high performing examinees are 

unexpectedly scoring this item incorrectly.  The misfit is also observed in the lower 

regions of the scale, at approximately, -1.0 logits where low performing examinees are 

unexpectedly scoring the item correctly.  Some of the same examinees who were most 

misfitting with the most misfitting responses also had the most unexpected responses. 

This could be as a result of examinees carelessness, or guessing.  The proportion of 

examinees who scored correctly on this item is 56 %.   
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Figure 4.11 Empirical Conditional Mean Scores and Expected Response Function Item 
41. 
 
 

Figure 4.11 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores for item 41.  The examinees are generally 

following the model line.  However, misfit is evident at approximately -0.05 logits, where 

examinees are unexpectedly scoring this item incorrectly.  The most misfitting examinees 

with the most misfitting response string’ gave the most unexpected responses.  56% of 

the proportion of examinees scored the item correctly item.   
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Figure 4.12 Empirical Conditional Mean Scores and Expected Response Function Item 
44. 
 
 

Figure 4.12 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores.  Generally, the examinees are tracking the 

model line.  However, the misfit is pronounced in the lower regions of the scale at 

approximately -3.2 logits, where low performing examinees were unexpectedly scoring 

this item correctly. The same examinees had the most misfitting response string and gave 

the most unexpected responses.  The proportion who scored it correctly is 66%.   
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Figure 4.13 Empirical Conditional Mean Scores and Expected Response Function Item 
45. 
 
 

Figure 4.13 shows the expected response function and the empirical scores 

conditional on the estimated empirical scores.   While misfits is evident along the scale, 

the misfit is very apparent in the lower regions of the scale at approximately -2.8 logits, 

where low performing examinees are unexpectedly scoring this item correctly.  Some of 

the examinees with the most misfitting responses also had the most unexpected response 

strings, while others were random examinees. The proportion of examinees to score this 

item correctly is 66 %. 
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Rasch Model Fit of Task Model and Empirical Items for English Language 2013 
 
 
Table 4.5 
 
Summary Statistics across Items for Empirical and Cognitive Task Model for English 
Language 2013.       
 
                      
Variables    N  MEAN         SD  MAX   MIN 

    
Empirical  MS INFIT    54  1.00  0.07  1.18  0.86 

  MS OUTFIT    54  0.99  0.15  1.65  0.65 
        SE    54  0.04  0.00  0.05  0.03 
    

   
Task Model  MS INFIT    54  1.11  0.36  2.26  0.66 

  MS OUTFIT    54  1.16  0.54  2.94  0.55 

  SE    54  0.04  0.00  0.05  0.03 
                      

 
 
           According to Table 4.5, the MS Infit and MS Outfit values for the empirical Rasch 

model are close to or equal to 1.0 and within the acceptable range.  The MS Infit and MS 

Outfit values for the cognitive task model exceed 1.0, which suggest irregularities in the 

data, such as outliers or unexpected response patterns near the examinee’s ability level 

along the latent scale.  The standard deviation reveals wide variability in scores for the 

task model and closely distributed scores for the empirical.   The maximum MS Infit and 

MS Outfit scores are high and outside of the acceptable range for the task model.  The 

empirical has a high MS Outfit value, which is also unacceptable.  The minimum scores 

are within acceptable ranges.  
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           Generally, the model standard error (SE) values for both the empirical and the task 

model person measures are small and similar indicating that misfit of the data to the 

model is small in relation to the precision of measurement.    

 
Table 4.6 
 
Summary Statistics across Persons for Empirical and Cognitive Task Model for English 
Language 2013.  
      
                    

Variables N MEAN        SD MAX  MIN 
    

Empirical 
MS 
INFIT 

4299 1.00 0.13 1.54 0.62 

 
MS 
OUTFIT 

4299 0.99 0.24 2.75 0.33 

 SE 4299 0.34 0.05 1.02 0.30 
          

    
Task 
Model 

MS 
INFIT 

4299 1.08 0.14 1.75 0.64 

 MS 
OUTFIT 

4299 1.16 0.30 3.92 0.33 

 SE 4299 0.34 0.05 1.03 0.30 
              

 
           According to Table 4.6, the MS Infit and MS Outfit for the 4299 examinees for the 

empirical analysis has values close to or equal to 1.0, and within the acceptable range.  

The MS Infit and MS Outfit values for the task models just exceed 1.0, indication some 

misfits in the data.  The standard deviation for both the task model and empirical indicate 

a comparable distribution of persons along the scale.  The maximum values for both the 
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empirical and the task model are outside of the acceptable range and indicate some 

misfits of persons.  The minimum values are acceptable.  

           Overall, the standard error shows that there are some noise associated with the 

precision of the person measures.   

 

 
 
Figure 4.14 Scatterplot of Misfitting MS Outfit Items for Empirical and Cognitive 
Task Model for English Language 2013.  
          
 
  Figure 4.14, scatterplot shows the MS Outfit items for the empirical and task 

model for English Language 2012.  The empirical has item 17 with extreme values.  The 

items for the cognitive task model with extremely high or low MS Outfit values are 46, 1, 

45 36 35, 41 and 17.   
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 Figure 4.15 Scatterplot of Misfitting MS Infit Items for Empirical and Cognitive 
Task Model for English Language 2013.  
  
 
 According to Figure 4.15, the scatterplot shows the MS Infit values for the 

empirical and cognitive task model.  The most misfitting items with extreme MS Infit 

values for the cognitive task model are 46, 1, 45, 36, 35, 41 and 17.  These items have 

extremely high or low MS Infit values that signals misfits in the data.    There are no 

items or outliers for the empirical with extreme MS Infit values.   
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Table 4.7 
 
Summary Statistics of Misfitting items for English Language 2013. 
 
        
    Items P Value Infit Outfit 

1 0.55 2.23 2.77 
17 0.17 1.29 1.9 
35 0.61 1.87 2.21 
36 0.34 2.03 2.48 
41 0.5 1.86 2.11 
45 0.33 1.95 2.55 
46 0.44 2.26 2.94 
54 0.24 1.43 1.87 

EMP 17 17 1.18 1.65 
   
 
           Table 4.7 shows scores for the 8 misfitting items with extreme MS Outfit and MS 

Infit values for the empirical and cognitive task model analysis.   The proportion correct 

range from .61 to .17.   The extreme MS Infit values range from 2.26 to 1.43.  The 

extreme MS Outfit values range from 2.94 to 1.87.  Item 17 is the only misfitting item 

that is common to both the empirical and the task model. 
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Description of Misfitting Items for English Language 2013 
 
 

 
 
Figure 4.16 Empirical Conditional Mean Scores and Expected Response Function Item 
17. 
 
 

Figure 4.16, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 17.   The misfit is very pronounced 

along the lower regions of the scale, where the low performing examinees predicted to 

score this item incorrectly were scoring it correctly.  The most misfitting examinees, with 

the most misfitting response string were giving the most unexpected responses. This item 

appear to be measuring more than one dimension, as persons who were expected to score 

incorrectly were not.  Only 17% ሺ݌௜ ൌ .17ሻ of examinees scored correctly on this item.    
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This item appear to have systematic error and should be considered to be revised or 

discarded.  The options should be examined for ambiguity.  

 

 

Figure 4.17 Empirical Conditional Mean Scores and Expected Response Function Item 1. 
 
 

The misfit is pronounced in the upper regions of the scale at approximately +3.0 

logits, where high performing examinees who were predicted to score correctly were 

unexpectedly scoring this item incorrectly.  The examinees who were scoring incorrectly 

appear to be random as those who were most misfitting were different to those with the 

most misfitting responses and those who gave the most unexpected responses.  These 

examinees may have made careless mistakes in selecting the correct answer.  55 % of 

examinees scored this item correctly.   
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Figure 4.18 Empirical Conditional Mean Scores and Expected Response Function Item 
17  
 
 

Figure 4.18, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 17 for cognitive task model.   This 

item is showing great misfit along the scale.  This item appear to be measuring more than 

one dimension, as persons who should be scoring correctly, unexpectedly are not and 

those predicted to score it incorrectly at the lower regions, are unexpectedly scoring it 

correctly.   Only 17 % ሺ݌௜ ൌ .17ሻ of examinees scored this item correctly.  
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Figure 4.19. Empirical Conditional Mean Scores and Expected Response Function Item 
35. 
 
 

Figure 4.19, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   The examinees appear to be roughly 

following the model line, however, misfits are evident in the upper regions of the scale, 

above +3.0 logits, where high performing examinees are unexpectedly scoring the item 

incorrectly.  Some of these examinees had the most unexpected response string and the 

most misfitting response string.  They appear to be mainly random examinees.    61% 

scored this item correctly.  
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Figure 4.20 Empirical Conditional Mean Scores and Expected Response Function Item 
36. 
 
 

Figure 4.20, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 36.  The examinees are roughly 

following the model line, but misfit is evident in the lower regions of the scale, at about -

3.8 logits, where low performing examinees are unexpectedly scoring this item correctly.  

Some of the most misfitting examinees, had the most misfitting responses and the most 

unexpected response string in addition to other random examinees.   Some high 

performing examinees were unexpectedly scoring this item incorrectly as well.  34 % of 

the examinees scored correctly on this item.  This item should be examined for the 

possibility that more than one option can be correct.   
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Figure 4.21 Empirical Conditional Mean Scores and Expected Response Function Item 
41 
 
 

Figure 4.21, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 41.   The item is misfitting in the 

upper regions of the scale, at approximately 3.0 logits, where high performing examinees 

are unexpectedly scoring this item incorrectly.  These same examinees had the most 

misfitting response string and the most unexpected response string, while others were 

random examinees.  50 % of examinees scored correctly on this item.    The examinees 

could have made careless mistakes.  
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Figure 4.22 Empirical Conditional Mean Scores and Expected Response Function Item 
45.  
 
 

Figure 4.22, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 45.   This item is showing that 

examinees are roughly tracking the model line.  However, misfits are evident in the lower 

regions of the scale, at approximately 3.0 logits, where a number of low performing 

examinees are unexpectedly scoring this item correctly. These were the most misfitting 

persons, with the most misfitting responses and the most unexpected responses to the 

item.  Also included are some random examinees. 33 % of examinees scored correctly on 

this item.  Some examinees may have guessed the correct response.   
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Figure 4.23 Empirical Conditional Mean Scores and Expected Response Function Item 
46  
 
 

Figure 4.23, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 46.   The misfit is pronounced in 

the upper regions of the scale above 2.0 logits, where high ability examinees are 

unexpectedly scoring this item incorrectly. Some of the same examinees had the most 

misfitting responses and gave the most unexpected responses.     44 % of the examinees 

scored correctly on this item. 
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Figure 4.24 Empirical Conditional Mean Scores and Expected Response Function Item 
54  
 
 

Figure 4.24, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   The examinees are roughly tracking the 

model line, however misfit is pronounced in the lower regions of the scale at 

approximately 2.5 logits, where low performing examinees are unexpectedly scoring this 

item correctly.  Some of these same examinees had the most misfitting and unexpected 

responses.  Examinees may have guessed the correct response.  54 % of examinees 

scored correctly on this item.   
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                Rasch Model Fit of Task Model and Empirical Difficulties for Calculus 2012 
 
 
Table 4.8 

Summary Statistics across Items for Empirical and Cognitive Task Model for Calculus 
2012 
 
              

Variables N MEAN 
      

SD 
MAX 

 
MIN 

    

Empirical 
MS 
INFIT 

45 1.00 0.06 1.11 0.89 

 
MS 
OUTFIT 

45 0.99 0.09 1.17 0.80 

       SE 45 0.04 0.00 0.05 0.03 
    

   
Task 
Model 

MS 
INFIT 

45 1.12 0.25 2.19 0.80 

 
MS 
OUTFIT 

45 1.17 0.38 2.83 0.74 

 SE 45 0.04 0.00 0.04 0.03 
              

 
 
 Table 4.8 shows that the empirical MS Infit and MS Outfit values are close to or 

equal to 1.0, within the acceptable range, indicating relative fit of the data to the model. 

The high MS Infit and MS Outfit scores for the task model suggest that there are 

irregularities in the data.  The small standard deviation for the empirical indicate that the 

scores are very compact, while those of the task model are broadly distributed around the 

mean. The maximum scores for the task model extreme and outside of the acceptable 

range.  The maximum and minimum scores for the empirical are within the acceptable  
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range. Thus, Table 8 illustrates that all items for the empirical measure fit the 

expectations of the Rasch model. 

            The model standard error (SE) values for both the empirical and the task model 

person measures are small, indicating that misfit of the data to the model’s precision of 

measurement is small.   

 
Table 4.9 

Summary Statistics across Persons for Empirical and Cognitive Task Model for  
Calculus 2012. 
 
              
Variables N MEAN SD MAX  MIN 

    

Empirical 
MS 
INFIT 

4248 1.00 0.10 1.40 0.73 

 
MS 
OUTFIT 

4248 0.99 0.20 2.76 0.31 

       SE 4248 0.37 0.09 1.02 0.32 
    

    
Task 
Model 

MS 
INFIT 

4248 1.11 0.14 1.68 0.67 

 
MS 
OUTFIT 

4248 1.17 0.30 5.46 0.14 

 SE 4248 0.38 0.09 1.03 0.33 
              

 

 According to Table 4.9, the MS Infit and MS Outfit for the empirical person 

measures are close to or equal to 1.0, within the acceptable range.  The MS Infit and MS 

Outfit values for the task models just exceed the acceptable range.  Generally, the  
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standard deviation for the task model and the empirical indicate a relatively broad 

distribution of persons along the scale.  The extreme maximum values indicate that there 

are some random noise in the data.  The minimum values are within acceptable range.  

 Overall, the standard error shows that there are random noise associated with the 

precision of the person model fit measures for the empirical and task model.   

 

 

Figure 4.25 Scatterplot of Misfitting MS Outfit Items for Empirical and Cognitive 
Task Model for Calculus 2012. 
 
 
         Figure 4.25, scatterplot shows that the scores are generally closely aligned together.  

It highlights the extreme outliers for the cognitive task model.  Items 6, 21, 5 and 11 have 

the highest or lowest MS Outfit values and are considered to be outliers.  There are no 

outliers for the empirical in this dataset.   
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Figure 4.26 Scatterplot of Misfitting MS Infit Items for Empirical and Cognitive 
Task Model for Calculus 2013. 
 
 
           Figure 4.26, shows the scatterplot of the MS Infit items for the empirical and the 

task model.  The most misfitting items with extreme MS Infit values for the cognitive 

task model are 6, 21, 15 and 11.  There are no items or outliers for the empirical with 

extreme values.   
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Table 4.10 
 
Summary Statistics of Misfitting Items for Calculus 2012 
 

Items P Value Infit Outfit 

5 0.61 1.52 1.78 
6 0.6 2.19 2.83 
8 0.46 1.32 1.49 

11 0.7 1.48 1.66 
18 0.51 1.38 1.59 
21 0.34 1.87 2.45 

 
 

Table 4.10 shows 6 cognitive task model items with high or extreme MS Infit and 

MS Outfit scores.  The MS Infit values range from 2.19 to 1.32.  The MS Outfit values 

range from 3.83 to 1.49.   These extreme scores are responsible for any misfit in the data.  

The most misfitting items are 6 and 21.   
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Description of Misfitting Items for Calculus 2012 
 

         

 

Figure 4.27 Empirical Conditional Mean Scores and Expected Response Function Item 5. 
 

 
Figure 4.27, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 5.   Generally, the examinees are 

tracking the model line.  The misfit is pronounced in the lower regions of the scale at 

approximately -2.8 logits, where low performing examinees were unexpectedly scoring 

this item correctly.   These appear to be random examinees with the most misfitting 

response string.  61% of examinees scored this item correctly.   Most likely examinees 

may have guessed the correct response.  
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Figure 4.28 Empirical Conditional Mean Scores and Expected Response Function Item 6. 
 
 

Figure 4.28, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 6.   The misfit is evident in the 

upper regions of the scale where high performing examinees predicted to score this item 

correctly were unexpectedly scoring it incorrectly. This could be as a result of careless 

mistake.   60 % of examinees scored this item correctly.   
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Figure 4.29 Empirical Conditional Mean Scores and Expected Response Function Item 8. 
 
 

Figure 4.29, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   This item is showing misfits and in the 

upper regions at about 2.0 logits, where high performing examinees were unexpectedly 

scoring this item incorrectly.  Some low performing examinees were unexpectedly 

scoring this item correctly.  These examinees comprised those who were most misfitting, 

gave the most misfitting responses and the most unexpected response string.  The 

proportion of examinees to score this item correctly is 46%.  
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Figure 4.30 Empirical Conditional Mean Scores and Expected Response Function Item 
11. 

 
 
Figure 4.30, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   The examinees are generally tracking the 

model line. This item is showing misfit in the upper regions of the scale, at approximately 

+2.8 logits where examinees were unexpectedly scoring this item incorrectly.   70% of 

examinees scored this item correctly.   
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Figure 4.31 Empirical Conditional Mean Scores and Expected Response Function Item 
18. 
 
 

Figure 4.31, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   The examinees are generally tracking the 

model line.  However, the item is showing misfit in the lower regions of the scale -2.0 

logits, where low performing examinees were unexpectedly scoring this item correctly. 

There were some random examinees in the upper regions of the scale who unexpectedly 

scored this item incorrectly.  Some of the most misfitting examinees had the most 

misfitting responses, but not the most unexpected responses.  51 % of the proportion of 

examinees scored this item correctly.   
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          Figure 4.32 Empirical Conditional Mean Scores and Expected Response Function 
Item 21. 
 
 

Figure 4.32, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 21.   This item misfit is 

pronounced in the region of the scale at approximately 1.0 logits, where high performing 

examinees are unexpectedly scoring this item incorrectly.  These were some of the most 

misfitting examinees, with the most misfitting response strings and the most unexpected 

responses to this item.  A number of examinees at the lower region of the scale 

unexpectedly scored this item correctly.  34 % of all examinees scored this item correctly.  
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Rasch Model Fit of Task Model and Empirical Difficulties for Calculus 2013 

      

Table 4.11    

Summary Statistics across Items for Empirical and Cognitive Task Model for Calculus 
2013      
  
              

Variables N MEAN 
      

SD 
MAX  MIN 

   

Empirical 
MS 
INFIT 

45 1.00 0.06 1.11 0.88 

 
MS 
OUTFIT 

45 0.99 0.11 1.26 0.79 

 SE 45 0.03 0.00 0.04 0.03 
         

   
Task 
Model 

MS 
INFIT 

45 1.13 0.30 2.19 0.76 

 
MS 
OUTFIT 

45 1.19 0.43 2.75 0.69 

 SE 45 0.03 0.00 0.03 0.02 
              

 
 

Table 4.11 shows that the empirical MS Infit and MS Outfit have relative fit, with 

values close to or equal to 1.0.  The values of the task model have exceeded 1.0 and are 

outside of the acceptable range.  The standard deviation for the empirical indicates scores 

that are closely distributed around the mean, while the task model are widely distributed.  

The maximum scores for the task model are high and exceed the acceptable  range, while 

the maximum and minimum scores for the empirical and task model are acceptable.  All 

items for the empirical measure fit the expectations of the Rasch model.   
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Overall, the model standard error (SE) values for both the empirical and the task 

model are small, indicating that the fit of the data to the models is associated with small 

amounts of random noise.  

 
Table 4.12 
 
Summary Statistics across Persons for Empirical and Cognitive Task Model for Calculus 
2013       
 
              
Variables N MEAN SD MAX  MIN 

    

Empirical 
MS 
INFIT 

7942 1 0.13 1.61 0.61 

 
MS 
OUTFIT 

7942 0.99 0.26 5.23 0.36 

 SE 7942 0.37 0.06 1.03 0.33 
          

    
Task 
Model 

MS 
INFIT 

7942 1.12 0.15 1.74 0.59 

 
MS 
OUTFIT 

7942 1.19 0.34 6.38 0.16 

 SE 7942 0.37 0.07 1.04 0.34 
              

 
 

According to Table 4.12, the MS Infit and MS Outfit values for the 7942 persons 

for the measures are close to or equal to 1.0, within the acceptable range.  The MS Infit  

and MS Outfit values for the task models just exceed the acceptable range.  The standard 

deviation for the task model and the empirical are very similar in that the persons are 

relatively widely distributed along the scale.  The maximum and minimum values are 

acceptable.  
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           The standard error shows that there are some noise associated with the precision of 

measurement of the persons.   

 

 
 
Figure 4.33 Scatterplot of Misfitting MS Outfit Items for Empirical and Cognitive 
Task Model for Calculus 2013. 
 
 

Figure 4.33, shows the scatter plot of MS Oufit for the empirical and task model.  

The scatterplot reveals that items 8 28, 3, 11, 4 and 36 have the most extreme MS Outfit 

values and are outliers for the cognitive task model.   There are no items or outliers for 

the empirical with extreme values and considered to be outliers.   
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Figure 4.34 Scatterplot of Misfitting MS Infit Items for Empirical and Cognitive 
Task Model for Calculus 2013.  
 
 

According to Figure 4.34, the four most misfitting items with extreme MS Infit 

values for the cognitive task model are  8, 28, 11, 3 4 and 36, which signals irregularities 

in the data.    There are no items or outliers for the empirical with extreme values.                
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Table 4.13 

Summary Statistics of Misfitting Items for Calculus 2013 
 

Items P Value Infit Outfit 
3 0.53 1.71 2.12 
4 0.69 1.60 1.92 
8 0.76 2.19 2.75 
11 0.57 1.81 2.03 
14 0.42 1.24 1.31 
23 0.37 1.24 1.38 
24 0.35 1.19 1.34 
28 0.32 1.91 2.39 
36 0.68 1.58 1.74 

 
          

Table 4.13 shows the 9 cognitive task model items with high MS Infit and MS 

Outfit values.  The high MS Infit values range from 1.19 to 2.19.  The high MS Outfit 

values range from 1.31 to 2.75.    There are no extreme values for the empirical data. 

 

 

 

 

 

 

 

 



www.manaraa.com

109 

Description of Misfitting Items for Calculus 2013  
 
                                 

 

Figure 4.35 Empirical Conditional Mean Scores and Expected Response Function Item 3. 
 
 

Figure 4.35, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 3.   This item is showing misfit 

particularly in the upper region of the scale where high performing examinees were 

unexpectedly scoring this item incorrectly.  These examinees had the most misfitting 

response string and gave the most unexpected responses.  However, they were not the 

most misfitting persons.   53 % of examinees scored this item correctly.  
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Figure 4.36 Empirical Conditional Mean Scores and Expected Response Function Item 4. 
 
 

Figure 4.36, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 4.   The examinees is roughly 

tracking the model line.  The item is showing misfit particularly at the upper regions of 

the scale at about 4.5 logits, where high performing examinees were unexpectedly 

scoring this item incorrectly.  Some of these same examinees were the most misfitting, 

with the most misfitting response string and had the most unexpected responses to this 

item. The proportion of examinees who scored it correctly is 69 %.  

 

 



www.manaraa.com

111 

 

Figure 4.37 Empirical Conditional Mean Scores and Expected Response Function Item 8 

 
Figure 4.37, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 8.   The examinees in the lower 

regions of the logit scale are misfitting the data, at about -2.0 logits where low 

performing examinees were unexpectedly scoring this item correctly.  Examinees had the 

most misfitting and unexpected responses. The proportion of examinees who scored it 

correctly is 76 %. 
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Figure 4.38 Empirical Conditional Mean Scores and Expected Response Function Item 
11. 
 
 

Figure 4.38, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 11.   The results show that the 

examinees are generally tracking the model line.  The item is showing misfit at the upper 

region of the scale, at approximately 4.0 logits, where high performing examinees 

predicted to score correctly were unexpectedly scoring incorrectly.  Some of these 

examinees were the most misfitting with the most misfitting responses.  Others appear to 

be random examinees.  Examinees may have made careless mistakes.  57 % of the 

proportion of examinees scored this item correctly.     
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Figure 4.39 Empirical Conditional Mean Scores and Expected Response Function Item 
14. 
 
 

Figure 4.39, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 14.   The examinees are roughly 

tracking the model line.  The item is showing misfit at the upper region at approximately 

2.0 logits, where high performing examinees predicted to score correctly are scoring 

incorrectly.  These same examinees had the most misfitting responses to this item. Misfit 

is also evident in the lower region of the scale at -2.0 logits where low performing 

examinees are scoring the item correctly.  42 % of the proportion of examinees scored 

this item correctly.   
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Figure 4.40 Empirical Conditional Mean Scores and Expected Response Function Item 
23. 
 
 

Figure 4.40, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 23.   This item is showing that 

generally, the examinees are tracking the model line.  However, misfit is evident in the 

upper region where high performing examinees are unexpectedly scoring the item 

incorrectly.  In the lower regions of the scale at about -2.0 logits, low performing 

examinees are unexpectedly scoring this item correctly.  Some of the same examinees 

had the most misfitting and unexpected responses.   37 % of examinees scored this item 

correctly.  
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Figure 4.41 Empirical Conditional Mean Scores and Expected Response Function Item 
24. 
 
 
 Figure 4.41, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   The misfit is pronounced in the upper 

regions of the scale at about 2.0 logits, where high performing examinees were 

unexpectedly scoring incorrectly.  In the lower region of the scale, some examinees were 

unexpectedly scoring the item correctly.  The same examinees were the most misfitting, 

with the most misfitting response string and gave the most unexpected responses. Others 

were random examinees.  This could be due to careless mistakes and guessing.  35 % 

scored this item correctly. 
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Figure 4.42 Empirical Conditional Mean Scores and Expected Response Function Item 
28. 
 
 

Figure 4.42, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores.   This item is showing that examinees are 

roughly tracking the model line.  However, misfits occur in the lower regions of the scale, 

about -3.2 logits, where low performing examinees are unexpectedly scoring this item 

correctly.  Some of these examinees had the most misfitting response string and gave the 

most unexpected responses. Others were random examinees.  There is evidence of misfit 

in the upper regions of the scale at about 1.0 logits where high performing examinees are 

unexpectedly scoring the item incorrectly.    32 % of the proportion of examinees scored 

this item correctly.   
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Figure 4.43 Empirical Conditional Mean Scores and Expected Response Function Item 
36. 
 
 

Figure 4.43, shows the expected response function and the empirical scores, 

conditional on the estimated empirical scores for item 36.  This item is showing misfits in 

the upper regions of the scale, at about 3.5 logits, where high performing examinees were 

unexpectedly scoring this item incorrectly.  These examinees had the most misfitting 

responses, and gave the most unexpected responses to this item.  68% of examinees 

scored this item correctly.  
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The Effects of Cognitive Task Model on Proficiency Scores 

The second research questions relates to the impact of using cognitive task model 

derived complexity index scores to estimate examinees proficiency.  This is important as 

the research findings can demonstrate the possibility of using assessment engineering 

cognitive task model to replace the need for pretesting items.  This will have tremendous 

impact particularly in the reduction of the exponential cost incurred by testing companies 

for pretesting.  

 
Table 4.14 
 
Average Proficiency Estimates for Empirical and Task Model 
 

Subjects Variables N 
      

             
       
    

            
 Empirical 2172 0.952 1.025 0.022 

English 
2012   

  Task Model 2172 1.02 1.078 0.023 
   

 Empirical 4299 0.65 0.875 0.013 
English 

2013   
  Task Model 4299 0.677 0.911 0.014 
   

 Empirical 4248 0.716 1.001 0.015 
Calculus 

2012   
  Task Model 4248 0.737 1.069 0.016 
   

 Empirical 7942 0.588 0.961 0.011 
Calculus 

2013   
  Task Model 7942 0.532 1.058 0.012 
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According to Table 4.14, the average proficiency estimates for the cognitive task 

models and the empirical for each of the four assessment is quite similar. Overall, the 

average theta estimates of the examinees to perform on the assessments range from 

moderate to high.  English 2012 assessment had the largest mean proficiency estimate, 

while the smallest mean proficiency estimate was with Calculus 2013. For both of these 

groups, the average ability ranges from moderately low to moderately high ability.   

While all of the assessments had small standard error (SE) values, ranging from 

0.011 to 0.023.  The small mean standard error results indicate that proficiency estimates 

in these groups have less error associated with the values when computed than would 

higher SE.  Calculus 2012 had the smallest SE 0.011. The highest SE values were 

estimated in English 2012, at 0.023.   

The standard deviation (SD) for English 2012 is the largest, and indicates a large 

distribution of examinees across the scale for that subject. The lowest SD values was 

found with English 2013 and Calculus, 2013.     All of the values are similar and close to 

1.0.  
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       Figure 4.44 Empirical Item Person Map for English Language 2012  
 
 
           According to Figure 4.44, the person ability estimates range from approximately 

+4.5 to -1.5 logits, and the item estimates range from approximately +2.5 to -2.5 logits.  

The figure indicates that the items are not adequately targeting all of the examinees, as 

examinees located above 2.5 logits are not being targeted, which result in important 

information about them being lost.  Overall, a large number of examinees are being 

covered by the items.  Examinees will be able to score correctly the items that are located 

below their proficiency. 
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 Figure 4.45 Cognitive Task Model Item Person Map for English Language 2012  
 
 

According to Figure 4.45, the person ability estimates range from approximately 

+5.5 to -1.5 logits. Likewise, the item estimates range from approximately +4.5 to -1.5 

logits.  The items target most points along the logit scale. The distribution of items along 

the logit scale does not reflect the examinee population as some examinees above +4.5 

logits were not catered for by the items, similarly examinees between +2.5 to +3.5 logits 

were excluded.   The high ability examinees will miss some of the items but are able to 

score correctly all items below their proficiency. The frequency of easy items is highest.   
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          Figure 4.46 Empirical Item Person Map for English Language 2013 
  
 

Figures 4.46 shows the person ability estimates range from approximately +3.5 to 

-1.5 logits.  The item estimates range from approximately +2.5 to -2.5 logits. The items 

extend along the scale, disproportionately, and do not adequately cover those examinees 

above +2.5 logits. Generally, the items are targeting most of the examinees, even though 

it is disproportionate.  

The frequency of easy items is high, and does not mirror the persons at that region 

of the scale. There is evidence of insufficient item targeting of items over the continuum 

to support examinee proficiency.      
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 Figure 4.47 Cognitive Task Model Item Person Map for English Language 2013  
 
 

  According to Figure 4.47, the person ability estimates range from approximately 

+3.5 to -2.5 logits. The item estimates range from approximately +2.5 to -2.5 logits. The 

most able respondents on this measure are not being adequately targeted by the items and 

important information about these examinees is lost.  It is also possible to predict the 

probability of a test taker's success on the rest of the items, which are below their ability.  

The highest frequency of items are between -1.5 and -0.5 logits.   
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                       Figure 4.48 Empirical Item Person Map for Calculus 2012 
 
 
Figure 4.48 shows the mirrored distributions of person proficiency estimates and 

item difficulties computed using for the empirical Calculus 2012 assessment for 45 items.  

According to Figure 4.48, the person ability estimates range from approximately +5.5 to -

1.5 logits.   

The item estimates range from approximately +2.5 to -1.5 logits.  The items are 

not representative of the total target population, as not all items are targeted to examinees 

located above 1.5 logits on the scale.  This result in valuable data about those high ability 

examinees being lost. In this example, the examinees overall are ‘better’ than the items.  

The examinees who are above 1.5 logits should be are able to score correctly on all of the  

 

 

 



www.manaraa.com

125 

items below their proficiency.  Likewise, the examinees should be able to score the items 

correctly that are below -1.5 logits, which is below their proficiency levels.    

Most of the items are located between +0.05 and -0.05 logits. The person’s ability does 

not match the item difficulty.     

                                                                                                                                                            
                                                                                

 

        Figure 4.49 Cognitive Task Model Item Person Map for Calculus 2012 
 
 
            Figure 4.49 shows the mirrored distributions of proficiency scores and item 

difficulties for the task model Calculus items for 45 items.  The person ability estimates 

range from approximately +5.5 to -2.5 logits, and the item estimates range from 

approximately +2.5 to -2.5 logits.   The items do not target examinees located above +2.5 

logits as too few difficult items provide adequate important information about the 

abilities of these high ability examinees.  Conversely, the examinees on the lower levels  
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of the scale have easy items, which are not difficult enough to challenge them.  Most of 

the items were located between +1.5 and -0.5 logits. There are no items above +2.5logits.  

For the cognitive task model, the person’s ability appear to provide a more adequate 

match to the item difficulty on the English assessment.                                                                                

                                      

 

                          Figure 4.50 Empirical Item Person Map for Calculus 2013.   
 
 

According to Figure 4.50, the person ability estimates range from approximately 

+3.5 to -2.5 logits.  The item estimates range from approximately +2.5 to -2.5 logits. 

Thus, the items are not adequately measuring the most able respondents on this measure. 

There are no difficult items that would provide useful information about examinees 

abilities above +2.5 logits.  Most of the items located between +0.5 to +1.5 are 

targeted to most of the examinees who mirror the items location.  The hierarchy of items' 

difficulty show that the frequency of easy items was high, that of medium relatively high 
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and the items are the highest.  This reflect the distribution of examinees in that region of 

the scale. 

 

 

Figure 4.51 Cognitive Task Model Item Person Map for Calculus 2013 
 
 

According to Figure 4.51, the person ability estimates range from approximately 

+4.5 to -2.5 logits. Likewise, the item estimates range from approximately +2.5 to -2.5 

logits.  There is a general spread of items across the scale, as almost all points along the 

scale are targeted.  However, there are some examinees above 2.5 logits that are not being 

tapped by any item, which may result in important information about them being lost.  It 

may be possible to predict the approximate result of a test taker's success on the given 

items that is below their ability level along the scale. The frequency of easy items are 

high as most items are located between -0.50 -1.50 logits.       
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Figure 4.52 Scatterplot of Proficiency Scores for Calculus and English Language 2012 
and 2013. 
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Figure 4.52, scatter plots display the relationship between the cognitive task 

model and empirical proficiency scores for the Calculus and English examinations. There 

is absolutely no difference in scoring the examinees using the cognitive task model 

complexity index score or scoring them with the empirical ‘b’ parameter scores.  The 

examinees are therefore indifferent as to whether they are scored with the complexity 

scores or the empirical scores.  This suggests that scoring examinees with either the 

empirical estimates or the cognitive task model estimates would yield similar results on 

these assessments.     
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CHAPTER V 

CONCLUSIONS AND DISCUSSION 
 
 

Overview and Summary of Findings 

The primary purpose of this dissertation is to investigate the comparability of 

Assessment Engineering Cognitive Task model derived parameter estimates with that of 

the statistical empirical Rasch Model.   The cognitive task modeling design process 

makes it possible to estimate how difficult an item is, long before an examinee takes the 

test.  This is usually accomplished without compromising the reliability and or validity of 

the test.   Few studies have been conducted which compared the assessment engineering 

cognitive task modeling design process to the more traditionally estimated empirical 

difficulty parameters.  Luecht, Burke and Devore (2009) had demonstrated that the task 

modelling process is capable of producing statistically similar results as the empirical 

estimates.   

  In this study, existing operational items from four criterion- referenced 

examinations were reversed engineered to develop cognitive task models or content 

blueprints that could potentially be used to develop thousands of multiple-choice items.  

The cognitive task modeling difficulty process is determined by careful design.  The 

design process involved using task model grammars and making minor modifications to
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cross validate the cognitive task models, and to evaluate the comparative and predictive 

power of the cognitive task model.   Finally, task model grammar complexity index was 

computed to re-score the examinee data, which allowed for comparisons to be made 

between the task model proficiency scores and the empirical MLE scores. This chapter 

encapsulates the findings in reference to the research questions that were enunciated in 

chapter one, their implications, along with the limitations and suggestions for future 

research.  

             The first research question asked whether assessment engineering cognitive task 

model derived difficulty parameters and the empirical Rasch difficulty parameters will 

yield similar estimates.  The high correlations between the cognitive Task model derived 

difficulty parameters and the empirical Rasch Model estimates across all four 

assessments as displayed in Table 1, have correlations that exceeds .800, which suggests 

that examinees maybe invariant as to whether the empirical or the task model parameter 

estimates are used.   The R-squared values exceeded .600 suggesting that the variance 

between the task model and the empirical estimates are mostly accounted for. 

            Using the Winsteps fit statistics, as evidence in the mean square infit and mean 

square outfit, the results of this study demonstrates that at the item level, the cognitive 

task models had many misfitting items that were outside of the acceptable range, more 

than the empirical statistical model.  Overall, the task modeling process worked well.  In 

fact, a common misfitting item for both the task model and the empirical, item 17 

displayed a larger MS Outfit value (1.65) for the empirical than for the task model (1.53).  
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This confirms that when misfits occurs, it is possible to redesign the features of the 

cognitive task model and so improve the task instead of discarding the item.  In this way  

assessment engineering provides a viable alternative to test design through its innovative 

and detailed design approach to test blueprinting.   

While this findings suggest that cognitive task modeling may be somewhat less 

accurate at producing difficulty parameters, as there was not a perfect relationship 

between cognitive task modeling and empirical examination data.  The results from the 

four assessments show that the cognitive task modeling process is effective in providing 

very plausible insights into item location parameters along the scale.  This finding also 

demonstrates the viability of using the cognitive task modeling approach for developing 

and incorporating difficulty and complexity into test items.  

            The second research question considered whether cognitive task model derived 

difficulty estimates can replace the Rasch model difficulty parameter estimates in scoring 

examinees.  As shown in chapter IV, scoring the examinees with the task model derived 

difficulties appears to be as good as scoring the examinees with the empirical item 

difficulty estimates.   For both the empirical and the task model, the SE values were 

found consistently low, indicating that both variables were stable and representative of 

the overall population.  The cognitive task models were able to produce scores that were 

an accurate reflection of examinee's ability as the empirical in the English Language and 

Calculus examinations.  

   The results indicate that the cognitive task model captured proficiency just as 

effectively as the empirical data.  This outcome implies that both the cognitive task 



www.manaraa.com

133 
 

model and the empirical model are both equally effective at targeting proficiencies 

accurately.  The empirical and cognitive task models were largely the same when  

proficiencies are compared.  Assessment engineering cognitive task model difficulty can 

replace empirical difficulties for scoring examinees.   

Overall, this study found that the cognitive task model difficulty parameters 

performed credibly well when compared to the empirically computed difficulty estimates, 

and that knowledge of the difficulty parameter a priori can result in reliable and valid 

estimates.  In addition, a comparison of proficiency scores for the empirical and cognitive 

task model yielded similar results.    The descriptive statistics showed that the amount of 

variation in item difficulties, that is, the standard deviations of the empirical Rasch model 

and the cognitive task model were generally similar.  Overall, the task modeling process 

did not add any additional error or method variance that might detract from the quality of 

the item parameter estimates.   The small size of the errors could be tolerated.     

The result of this research dissertation, while useful to test developers and practitioners, 

cannot be generalized beyond this sample and the four assessments used for data 

collection.  

Practical Implications of the Results 

Based on this study, the success of the cognitive task model derived difficulty 

parameters has proven to be informative. Knowledge of the cognitive task modeling 

process parameter difficulty estimates a priori can be used to guide test developers in the 

item selection process. Test developers can estimate how difficulty an item is before 

administering the test.  This will provide them with considerably more flexibility in 
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distributing the test items throughout the test based on their level of difficulty.  Hence, 

items would be selected at any point along the scale, which can provide the maximum  

amounts of information about examinee’s ability and inform decisions regarding 

placements and interventions.  Thus, items will be optimally chosen that will properly target 

each examinee. This will lead to increased accuracy between examinee and the difficulty of the 

test.   Test designers and educators using assessment engineering cognitive task modeling 

design approach, will succeed in lining up or ranking items from the highest or most 

difficulty to the lowest or easiest along the scale, in order to minimize the mistakes of 

allocating too many easy items and too few difficult items on the test.      

Test developers have a clear understanding of what they are measuring and how 

they are measuring it. This will impact the construct validity of the tests.   Kane (2013) 

asserts that the valid interpretation and use of test scores requires a clear statement of the 

claims and assumptions a priori or that the evidence be adequately supported.  

Through assessment engineering cognitive task models careful test design work, the 

model could specify the precise relationships between test items and ability scores, so 

that the intended outcomes can be realized.   

In addition, test developers can now focus design features of the model instead of 

focusing on statistical models for item/test analysis. In this confirmatory approach, the 

design features built into the item a priori allow for difficulty estimates to be known 

without the use of data hungry psychometric models 



www.manaraa.com

135 
 

The educator will have at their disposal, hundreds and thousands of items, 

uniquely crafted, and used without the fear of item exposure. This will result in cost 

effectiveness, as time and money that is usually spent on individual item pretesting can  

be eliminated. Thus the astronomical cost which are associated with item writing, and 

pilot testing can be reduced.   In addition, the on-demand use of items for formative 

assessment with near to immediate feedback.  Generally, the use of data hungry 

pscychometric, complex models will be reduced.  Assessment engineering saves on cost 

of item development.  This is very crucial today because of the high demand for more 

items especially in such areas as computer assisted testing (CAT) and other formative 

assessments. Hence the goal of assessment engineering which is to provide an extensive 

supply of low cost items will be facilitated. 

Limitations and Future Research 

Assessment engineering cognitive task modeling is a very time consuming 

process.  Designing the model and building the task models require a lot of up-front 

work. 

More collaboration is needed between the subject matter experts and the test 

developers throughout the entire process.   In addition the small numbers of subject 

matter experts provided a limitation in itself.  As stated earlier, it is important for 

psychometricians, SME’s and test developers to collaborate in the process. 

For future research, it will be imperative that investigations be conducted to 

determine the relationship between the cognitive task model and the Rasch model given a 

finite amount of response data from which to estimate the model parameters. According 
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to Luecht (2013), the generation of assessment engineering item parameters do not rely 

on the need for data-hungry psychometric models.  

To expand on the analysis to include distractor analysis, this will give a deeper 

understanding as to which option was not working and which was working best.  It will 

also help to incorporate more qualitative feedback form the SME’S, which will help to 

deepen the research and provide much deeper information and interpretation into the item 

difficulty levels of misfitting items. 

To experiment with different types of research designs such as experimental.  By 

so doing, the researcher will be able to better determine the impact on students 

proficiency score gain over a specified period of time.   In addition, administering the test 

to a control group and then re-administering the test after re-designing the task model for 

the misfitting items will provide more insight into the effectiveness of the task modeling 

process. 

To use different types of test items in developing the task models, to include items 

such as matching, true and false and some short answer items. In addition, to include 

common items equating particularly for comparison between tests. 

It is encouraged that the replicability of the task models be done with different 

datasets, particularly with a finite amount of response data from which to estimate the 

model parameters. Assessment engineering does not require large numbers of examinee 

data in order to compute item difficulties. 
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APPENDIX A 
 

TASK MODEL GRAMMARS FOR ENGLISH LANGUAGE AND CALCULUS 
 

 
Table 16  
  
Task Model Grammars for English Language 2012 -2013 
 

  

TMG's Definition  
Complexity 
Ratings 

Easy 
Identify To recognize or be able to name something or someone or to say what it is 1 

Define To give the meaning of a word or phrase 1 

Explain  To make something clear or easy to understand 1 

Infer To form an opinion based on the evidence or facts given. To hint at something 1 

Compare To look at closely, to note the similarity or difference between things 1 

Describe To give an account of something 1 

Imply To suggest without saying or showing clearly or plainly 1 
Medium 
Interpret To explain the meaning of something that is understood in a specified way              2 

Explain  To make something clear or easy to understand, to expand 2 

Infer To form an opinion based on the evidence or facts given. To hint at something 2 

Analyze  To examine critically or carefully in detail in order to identify the key factor 2 

Compare To look at closely, to note the similarity or difference between things 2 

Assess To judge or decide on the value or importance of something 2 

Apply To use a particular method or process or technique to be used on/for something 2 

Distinguish To notice or recognize differences between two or more things 2 

Describe To give an account of something 2 

Hard  

Evaluate  To make a judgment about something after considering carefully its value,  

 Importance or originality 3 

Summarize To state or express in a concise form 3 

Explain To make something clear or easy to understand 3 

Conclude To form a final judgment about something or to reach a logical end based on  

 evidence  3 

Inference  An assumption or conclusion that is rationally and logically made, based on the  

 given facts or circumstances 3 

Assess To judge or decide on the value or importance of something 3 

Distinguish To notice or recognize differences between two or more things 3 
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Table 17 
  
Task Model Grammars for Calculus 2012 -2013 
 

  

TMG's Definition 
Complexity 
Ratings 

Easy 
    

            

Recognize To be able to identify a equation, formula, concept, principle or algebraic 1 
 expression 

Recall To remember a mathematical operation from what was previously done 1 

Identify  To be able to use mathematical procedures, operations or properties 1 

Sum To aggregate two or more numbers or total 1 

Re-draw To sketch or trace figures or lines 1 

Use To make use of mathematical operations in order to solve a problem 1 

Medium  

Apply To put to a specific use in a given situation such as using a particular method  
 Or formula 2 

Calculate  To work-out or solve the value of something using a specific procedure 2 

Interpret To show how to extract the meaning out of an equation or formula or  
 mathematical expression 2 

Substitute The replacement of a term of an equation or expression by another that is 
 Known to have the same value in order to simplify the equation 2 

Compute Methods of solving a mathematical problem 2 

Simplify To reduce an equation, fraction etc to its simplest form 2 

Rewrite To write or expand a function or mathematical expression so as to show the  
 products, sum etc of its factors 2 

Analyze A method of proving a problem by working backward to something that is  
 known to be true based on the properties of numbers 2 

Solve  To find or work out, use a solution to a problem 2 

Determine To specify, fix or define the position or limit 2 

Classify/  

Categorize To put into groups based on common properties 2 

Connect Having a continuous path between two points, such that either it or its  
 converse holds between two members of its domain 2 
 Used of a curve, set or surface 

Hard  

Compare &  A strategy used to find a solution to a problem by examining the different 

Contrast  methods for commonality in formulas, symbols etc. and difference and  

 deciding on the best or most efficient one to solve the equation 3 

 
 

 
 

 
 



www.manaraa.com

153 
 

Evaluate To find or determine the value of or to solve an expression or equation 3 

Construct To draw a line, angle or figure so that it meets specific requirements  3 

Demonstrate To provide mathematical prove or show how to operate or work an  

  equation, formula etc.  3 
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APPENDIX B 
 

SUBJECT MATTER EXPERTS TASK DESCRIPTIVE STATEMENTS 
 
 

Table 18 
 
Subject Matter Experts Task Descriptive Statements for English Language 2012 - 
2013 
  

TASK DESCRIPTION 
PERCEIVED 
DIFFICULTY 

 

Read passageǀIdentify purposeǀSelect Option Easy 

Identify meaningǀMake comparisonǀRead sentences Easy 

Infer meaning from phraseǀReadǀIdentify meaning Moderate 

Read passageǀInterpret phraseǀIdentify meaning of Phrase Moderate 

Read paragraphsǀCompare paragraphsǀ Easy 

Read sentenceǀInterpret meaning in sentenceǀ Moderate 

Define word Easy 

Read paragraphǀAnalyze optionsǀDraw conclusionǀIdentify meaning Moderate 

Evaluate SentencesǀAnalyze AssumptionsǀRead sentencesǀ Hard 

Identify purpose of passageǀRead passageǀExamine meaning Easy 

Identify type of argumentǀDefine wordsǀAnalyze passageǀ Moderate 

Identify major points in passageǀRead passageǀLocate words Easy 

Define wordǀIdentify Words Easy 

Define wordsǀDifferentiate between optionsǀIdentify meaning Easy 

Make inferenceǀIdenfify meaningǀDefine wordsǀAnalyze options Easy 

Describe organization of passageǀAnalyze passageǀDefine wordsǀ Moderate 

Infer meaning of wordsǀRead sentencesǀExplain words Easy 

Explain paragraphǀDraw conclusionǀUnderstand paragraph Moderate 

Infer meaning from sentencesǀExplain sentencesǀAnalyze sentence Moderate 

Identify relationshipǀIdentify meaningǀInfer meaning Moderate 

Explain meaningǀIdentify option Easy 

Analyze paragraphǀExplain meaning of phrasesǀDifferentiate text Moderate 

Evaluate sentencesǀ Analyze sentencesǀ Identify meaning Moderate 

Analyze sentenceǀInfer meaningǀMake conclusionǀRead sentences Moderate 

Make comparisonǀIdentify optionǀMake suggestion Moderate 

Infer meaningǀdefine termsǀRead Endnote Easy 

Identify exampleǀExplain meaning Easy 

Make comparisonǀIdentify option Easy 
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Identify argumentǀMake comparisons Easy 

Analyze phrasesǀIdentify meaningǀRead critically Moderate 

Describe wordǀIdentify meaning Easy 

Read paragraphsǀDescribe meaningǀIdentify effect Easy 

Identify meaningǀExplain meaningǀRead sentences Easy 

Identify meaningǀExplain meaningǀ Easy 

Define wordsǀExplain sentencesǀ Easy 

Identify meaningǀExplain words and phrasesǀRead sentences Easy 

Interpret phraseǀDefine wordsǀExplain termsǀ Easy 

Identify argumentǀAnalyze responsesǀDefine terms Easy 

Infer meaningǀRead critically Easy 

Describe passageǀDefine words and phrasesǀExplain meaning Moderate 

Draw  conclusionǀSummarize passageǀ Moderate 

Define wordǀExplain phrasesǀRead passage criticallyǀ Moderate 

Define wordsǀexplain sentencesǀCritique sentenceǀDescribe text Hard 

Evaluate sentencesǀExplain sentencesǀIdentify author's strategy Hard 

Evaluate passageǀInfer meaning from phrasesǀDefine terms Hard 

Define phraseǀInfer meaning Easy 

Define phraseǀInterpret phrase Moderate 

Interpret phraseǀDefine wordsǀExplain meaning Moderate 

Analyze phrasesǀMake comparisonsǀExplain meaning Hard 

Define words and phrasesǀanalyse sentenceǀDraw conclusion Hard 

Identify purpose of sentenceǀEvaluate sentenceǀInterpet sentence Hard 

Analyze sentenceǀInterpret meaningǀRead critically Moderate 

Evaluate passageǀDefine termsǀMake descriptionsǀ Moderate 

Compare and contrastǀIdentify meaning of themeǀDefine wordsǀ Moderate 
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Table 19 

Subject Matter Experts Task Descriptive Statements for Calculus 2012 -2013   
                                                                                                                                                                                                                                

TASK DESCRIPTION 
PERCEIVED 
DIFFICULTY 

 
Recognize chain rule│Apply chain rule appropriately 
 

Easy 
 

Calculate derivative│Solve operation│Interpret meaning of operation│Sustitute 
operations 
 

Moderate 
 

Interpret area│Recognize operations│Calculate area using geometry 
 

Easy 
 

Calculate integral│Apply formula 
 

Easy 
 

Recognize geometric series│Apply formula│Simplify equation 
 

Moderate 
 

Rewrite integral│Rewrite limits│Rewrite to balance  
 

Easy 
 

Recognize equation│Rewrite formula│Apply chain rule│Simplify 
 

Easy 
 

Apply formula│Interpret tabular data│Use initial value 
 

Moderate 
 

Apply ratio test│Apply comparison test│Recognize tests for convergence 
 

Moderate 
 

Apply rules for integration│Simplify equation 
 

Easy 
 

Apply definitions of continuity and differentiation│Sketch graph 
 

Easy 
 

Calculate function│interpret function│Apply rule 
 

Moderate 
 

Apply ratio test for convergence│Solve expression 
 

Hard 
 

Recognize appropriate logistic model│Categorize choices as not logistic 
 

Hard 
 

Apply FTOC│Use, interpret relationships between functions  
 

Moderate 
 

Apply formula│Simplify equations 
 

Easy 
 

Identify series│Manipulate series 
 

Moderate 
 

Apply FTOC│Calculate area│Apply basic rules of integration 
 

Moderate 
 

Recognize slope of cone│Apply rule│Simplify algebra│Solve equation Moderate 

  
Recognize partial fractions│Apply Techniques│Apply rules for integration│Calculate 
logs│Apply log properties 
 

Moderate 
 

Interpret horizontal asymptote│Recall formula│Determine merit of options 
 

Hard 
 

Recognize power series│Apply rules of convergence│Determine merit of options 
 

Moderate 
 

Identify rate of change│Determine change 
 

Moderate 
 

Recognize integration by parts│Apply rules│Connect relationships 
 

Moderate 
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Apply integral techniques of limits│Use U-substitution│Apply limits at rules properly 
 

Moderate 
 

Apply rule for derivative│Recall functions│Substitute function│Evaluate trig 
functions 
 

Easy 
 

Recognize series│Apply rules for series and root test 
 

Moderate 
 

Apply rule│Recognize derivatives│Interpret used of function 
 

Easy 
 

Examine graph│Interpret graph 
 

Easy 
 

Compare rates of change│Examine graph 
 

Moderate 
 

Apply rules for integrals│Calculate area│Simplify equation 
 

Moderate 
 

Construct polynomial│Simplify equation 
 

Moderate 
 

Determine value of each statement│Interpret graph 
 

Moderate 
 

Recall points of inflection│Interpret function│Analyze or interpret tabular data 
 

Moderate 
 

Apply formula│Use key function 
 

Easy 
 

Compare and contrast answers│Apply conditions for continuity 
 

Easy 
 

Interpret rules for concave function│Evaluate from calculator│Graph function 
 

Moderate 
 

Interpret range of speed│Apply chain rule│Use calculator to evaluate change  
 

Moderate 
 

Interpret relationship between functions│Recognize function│Determine displays of 
correct response 
 

Moderate 
 

Recall formula for volume│Evaluate answer on calculator Easy 
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APPENDIX C 
 

TASK MODEL CODING SCHEMA AND SCORING INDICES 
 
 

Table 20 
 
Task Model Coding Schema and Scoring Indices for English Language 2012-2103 
 

Required Task Actions     Difficulty/Complexity 
 
Identify_purpose_meaning.simple 1 

Explain/Infer_phrase.simple 1 

Identify_words.simple 1 

Infer_meaning_words.simple 1 

Explain_meaning.simple 1 

Identify_phrases.simple 1 

Compare_ideas.simple 1 

Explain meaning_phrases.simple 1 

Define_word.simple 1 

Compare_sentence_endnote.simple 1 

Identify_sources.simple 1 

Explain_phrase.simple 1 

Describe_words.simple 1 

Define_phrases.simple 1 

Analyze_relationship.moderate 2 

Summarize_meaning.moderate 2 

Analyze_paragraph.moderate 2 

Infer_sentences.complex 2 

Compare_paragraphs.simple 2 

Interpret_phrases.moderate 2 

Analyze_meaning.moderate 2 

Identify_relationship.moderate 2 

Analyze_comparison.moderate 2 

Evaluate_phrases.moderate 2 

Interpret_sentence.moderate 2 

Infer.passage.complex 2 

Infer-meaning.moderate 2 

Differentiate/Compare_endnotes.simple 2 

Evaluate_text/passage.moderate 2 
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Analyze_paragraph 2 

Analyze_comparison.moderate 2 

Interpret_strategy.moderate 2 

Interpret_sentence purpose.moderate 2 

Infer_phrase.complex 3 

Evaluate_passage.complex 3 

Analyze_sentences.complex 3 

Evaluate_paragraph.complex 3 

Summarize-passage_rhetorical strategy.moderate 3 

Evaluate_passage_purpose.complex 3 

Evaluate_sentences.complex 3 

Analyze_theme_passage.complex 3 

Information Density     Difficulty/Complexity 

Select.simple 1 

Describe.simple 1 

Conclude.simple 1 

Compare.simple 1 

Critique.simple 1 

Locate.simple 1 

Meaning.simple 1 

Similarity.simple 1 

Locate.simple 1 

Explain.simple 1 

Word_meaning.simple 1 

Clarify_meaning.simple 1 

Apply.simple 1 

Locate.simple 1 

Identify.simple 1 

Integrate_combine.simple 1 

Referencing.simple 1 

Endnoting.simple 1 

Difference.simple 1 

Meaning.simple 1 

Interpret.simple 1 

Effect_repetition.simple 1 

Analogy.simple 1 

Argument.simple 1 

Relate_associate.moderate 2 
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Analyze_moderate 2 

Compare.moderate 2 

Suggest.moderate 2 

Argument.moderate 2 

Storytelling_values.moderate 2 

Description.moderate 2 

Explain.moderate 2 

Inference.moderate 2 

Sentences.moderate 2 

Illustrate.moderate 2 

Assess.moderate 2 

Conclude.moderate 2 

Purpose.moderate 2 

Summarize.complex 3 

Purpose.complex 3 

Summarize.complex 3 

Description.complex 3 

Evaluate.complex 3 

Contexts     Difficulty/Complexity 

Context.simple. 1 

Context.moderate 2 

Context.complex     3 
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Table 21  
 
TASK MODEL CODING SCHEMA AND SCORING INDICES – CALCULUS 
2012-2013 
 

Required Task Actions                 Difficulty/Complexity 
Apply_rule.simple 1 

Calculate_derivative.simple 1 

Solve_operation.simple 1 

Recall_formula.simple 1 

Interpret_operations.simple 1 

Calculate_area.simple 1 

Apply_formula.simple 1 

Calculate_integral.simple 1 

Sketch_graph.simple 1 

Rewrite_operation.simple 1 

Rewrite_formula.simple 1 

Simplify_equation.simple 1 

Interpret_graph.easy 1 

Substitute_function.moderate 2 

Simplify_equation.moderate 2 

Apply_formula.moderate 2 

Interpret_data.moderate 2 

Apply_ratiotest.moderate 2 

Apply_comparisontest.moderate 2 

Calculate_function.moderate 2 

Interpret_function 2 

Apply_FTOC.Moderate 2 

Identify_series.moderate 2 

Manipulate_series.moderate 2 

Calculate_area.moderate 2 

Apply_rules.moderate 2 

Simplify_algebra.moderate 2 

Solve_equation.moderate 2 

Identify_rate.moderate 2 

Determine_change.moderate 2 

Use_substitution.Moderate 2 

Compare_rates.moderate 2 

Construct_polynomial.moderate 2 
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Interpret_graph.moderate 2 

Analyze_data.Moderate 2 

Interpret_relationships.moderate 2 

Categproze_logistics 3 

Interpret_asymtote.hard 3 

Evaluate_function.hard 3 

Information Density Difficulty/Complexity 

Simplify_equations.simple 1 

Calculate.simple 1 

Use_rules.simple 1 

Recall_rules 1 

Values.simple 1 

Ratios_simple 1 

Functional_relationships.moderate 2 

Calculate.moderate 2 

Exponents.moderate 2 

Geometric_sequence 2 

Information_interpret 2 

Simplify.complex 3 

Convergence tests.complex 3 

Calculate.complex 3 

Functions.complex 3 

Values.complex 3 

  
Contexts Difficulty/Complexity 

Context.simple. 1 

Context.moderate 2 

Context.complex 3 
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APPENDIX D 

COGNITIVE COMPLEXITY SCORES 
 
 

Table 22 
 

Scoring of the Calculus items for Cognitive Task Complexity, Information Density and Context 
Complexity 
 

Items 

Average 
Cognitive 

Task 
Complexity 

Count 
of 

Actions 
Information 

Density 
Context 

Complexity 
Complexity 

Index 
Complexity 

Score 

1 1 1 1 1 1 1 

2 2 3 2 2 6 24 

3 2 2 2 1 4 8 

4 2 2 1 1 4 4 

5 2 2 3 3 4 36 

6 1 2 1 1 2 2 

7 2 3 3 1 6 18 

8 2 3 2 3 6 36 

9 2 3 2 1 6 12 

10 1 2 1 1 2 2 

11 1 2 2 1 2 4 

12 2 3 3 2 6 36 

13 3 2 2 1 6 12 

14 3 2 2 1 6 12 

15 2 2 3 1 4 12 

16 2 2 2 3 4 24 

17 2 2 1 1 4 4 

18 2 3 3 2 6 36 

19 2 4 2 2 8 16 

20 2 4 3 1 8 24 

21 2 1 2 1 2 4 

22 2 3 2 1 6 12 

23 1 1 2 2 1 4 

24 2 4 3 2 8 48 

25 2 3 3 1 6 18 

26 2 4 3 1 8 24 
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27 2 2 2 1 4 8 

28 2 2 2 2 4 16 

29 1 2 2 1 2 4 

30 2 3 2 1 6 12 

31 2 3 2 1 6 12 

32 2 2 1 2 4 8 

33 2 2 2 2 4 16 

34 2 3 2 3 6 36 

35 1 2 1 1 2 2 

36 1 1 2 1 1 8 

37 2 2 2 1 4 8 

38 2 3 2 3 6 36 

39 2 2 2 2 4 16 

40 1 2 2 2 2 8 

41 2 2 2 1 4 8 

42 2 2 1 1 4 4 

43 2 2 2 1 4 8 

44 2 2 2 1 4 8 

45 2 3 3 2 6 36 
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Table 23 
 

 Scoring of the English items for Cognitive Task Complexity, Information Density and Context 
Complexity 
   

Items Average 
Cognitive Task 
Complexity 

Count of 
Actions 

Information 
Density 

Context 
Complexity 

Complexity 
Index 

Complexity 
Score 

1 1 1 1 1 1 1 

2 1 1 2 1 1 2 

3 2 2 2 2 1 16 

4 2 1 1 1 4 2 

5 1 2 2 2 2 8 

6 2 2 2 1 1 12 

7 1 1 1 1 1 1 

8 2 2 2 2 2 16 

9 3 2 2 2 6 24 

10 1 1 2 2 1 4 

11 2 2 2 2 4 16 

12 1 2 1 1 2 2 

13 1 2 2 2 2 8 

14 1 1 2 2 1 4 

15 1 1 1 2 1 2 

16 2 2 2 2 4 16 

17 1 1 1 2 1 2 

18 1 2 1 2 1 4 

19 1 1 1 2 1 2 

20 2 1 2 3 2 12 

21 1 1 2 2 1 4 

22 2 2 2 2 4 16 
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23 2 1 3 2 1 12 

24 2 1 2 2 2 16 

25 2 2 1 2 4 8 

26 1 1 1 1 1 2 

27 1 1 2 1 1 2 

28 1 2 2 2 2 8 

29 1 1 2 2 2 4 

30 2 2 1 2 4 8 

31 1 2 3 2 1 12 

32 1 2 2 2 1 8 

33 1 2 2 2 1 8 

34 1 2 2 2 1 8 

35 1 1 1 1 1 1 

36 1 2 2 2 4 8 

37 1 2 2 2 4 8 

38 1 2 2 2 2 12 

39 1 2 2 2 1 12 

40 2 2 2 2 4 16 

41 2 1 1 2 2 4 

42 1 1 2 2 2 16 

43 3 2 2 2 4 24 

44 3 2 3 3 6 36 

45 3 2 2 3 6 36 

46 1 1 2 2 1 4 

47 2 1 3 2 2 12 

48 2 2 2 2 4 16 

49 3 2 2 2 6 24 
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50 3 2 2 3 9 36 

51 2 2 3 2 4 24 

52 2 2 2 2 4 16 

53 2 2 3 3 4 36 

54 2 2 3 2 4 12 
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APPENDIX E 
 

RUBRICS 
 
 

 Levels of Mastery for English Language 2012-2013 

Task 
Description 
 

Advanced (3) Average (2) Below Average (1) 

Vocabulary Excellent gasp and knowledge 
of a wide range of vocabulary 
words and terms related to the 
passage to respond to 
questions.   
Very good vocabulary  
 

Vocabulary appropriate to 
respond to most questions.    
Appropriate use/knowledge of 
vocabulary and terms.   

Limited range of vocabulary 
works to answer questions.  
Limited word usage and 
lower levels of 
understanding of what is 
required to solve the task. 
 
 

Semantics Fully Comprehends the 
meaning of words, sentences 
and phrases as used in the 
passages.  
The student has a good overall 
understanding of what is read. 

Adequately comprehends the 
meaning of words and sentences 
and phrases as used in the 
passages. 
The student understands most of 
what is read. 
 

Limited knowledge of 
the meaning of words  
and phrases.  Often  
guesses meaning of  
words and or phrases. 
The student often fails to 
understand what is being 
read 
 
 

Context Fully comprehend the context 
in which words in the passage 
or story are used. 
Most phrases are 
comprehensible 
Students clearly understand the 
concepts, constructs and the 
context in which words are 
used 

Adequately comprehends the 
context of the passage or story. 
Some phrases are 
comprehensible 

Limited comprehension 
of the context of the  
story. 
Many phrases are  
incomprehensible.   
There are frequent  
errors 
Low levels of understanding 
of the complexity of the 
information required to 
solve the task. 
Low context Complexity 
 

Task 
Description 
 

Advanced (3) Average (2) Below Average (1) 
 

Skills Can manipulate the advanced 
level of skills 
Students maximize the uses of 
appropriate strategies, cues and 
aids to correctly solve the task. 
High complexity 
 
 
 

 

Use of few context clues to 
assist in understanding the 
complexity of the task. 
Moderate complexity 
 

The students makes  
little use of the context  
clues and aids to help  
solve the task.   
Students possess limited or 
low levels of skills needed to 
solve the task.  
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Task 
description 

High complexity and Dense 
verbal load.  
 
Implicit association between 
stem and options.  
 

Moderate level of complexity 
and  information density of 
material 
 
Moderately implicit/explicit 
relations among stem and 
options (Knowledge Objects). 
 

Low levels of complexity 
Explicit association between  
stem and options 
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 Levels of Mastery Calculus 2012-1013 

Task 
Description 
 

Advanced Average  Below Average 

Reasoning Demonstrates thorough 
understanding of the 
relationships between functions 
and key features that must be 
used in logically reasoning out 
solution to the problem.  
Accurately reasons and follows 
all steps relevant in solving the 
problem 

  

Demonstrates clear reasoning 
and understanding of the 
relationship between functions 
and key features required to 
solve the problem.  Follows 
most steps logically to 
correctly solve the problem.   

Shows limited 
understanding of what is 
required in the problem.  
Fails to follow all steps in 
solving the problem.  
Unable to reason out the 
problem logically. 

Knowledge & 
Under-
standing 

Shows excellent understanding 
of the problem and correctly 
solves them.  
Uses correct method and 
mathematical techniques to 
solve the problem 
 
 

Shows adequate 
understanding of the problem.  
Uses correct method and 
mathematical technique to 
solve problem with minor 
errors 

Shows limited or little 
understanding of the 
problem.  Has little success 
in solving the problem 
 

Mathemati-
cal Concepts 

Demonstrate a thorough analysis 
and understanding of three or 
more Calculus concepts or 
functions use to solve the 
problem. apply the concepts 
Students will effectively use 
concepts of function, limit, 
continuity, derivative and 
integral.   
 

Demonstrate a good 
understanding and analysis of 
two calculus functions or  
concepts  to solve the problem 
Some areas of the response 
are incorrect. 

Minimal  
understanding  and  
use of one calculus  
functions or  
concepts required to  
correctly solve the  
problem   

Mathemati-
cal 
Terminology 
and Notation 

Student understands and uses 
correct symbols and terminology 
to solve the problem   
 

Accurate or correct use of 
some terminology and 
notation required to solve the 
problem. 
 

Limited use and  
understanding of  
appropriate  
terminology and  
notation to solve  
problem.  Frequent  
errors 
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Skills Computational and Calculations 
where appropriate. 
Thorough understanding of how 
to sketch graphs of polynomials, 
rational and exponential 
functions 
Algebraically and graphically 
demonstrate thorough 
understanding of key theoretical 
and geometrical calculus 
concepts 
 

Use of some calculations  and 
computations appropriately 
Adequate understanding of 
how to sketch graphs of 
polynomials, rational and 
exponential functions 
Algebraically and graphically 
demonstrate clear 
understanding of key 
theoretical and geometrical 
calculus concepts 
 

Little or no  
calculations or  
computation.  There  
are inaccuracies. 
Sketches graphs of  
polynomial, rational  
and exponential  
functions with errors  
and omissions. 
Algebraically and 
graphically demonstrate 
limited understanding of 
key theoretical and 
geometrical calculus 
concepts 
 

Application Accurate use of the correct 
formulas/equations to answer the 
question. 
Correctly determine which and 
when to apply calculus function 
and concepts to solve problem 
Students will apply methods of 
calculus to optimization, 
graphing and approximation.   

Appropriately use correct 
formulas/equations to answer 
the question most of the time 
Frequently correctly 
determine when and where to 
apply Calculus functions and  
concepts to solve problem 

Little use of the correct 
formulas/equations to 
answer the question 
Seldom correctly  
determine and apply   
calculus functions  
and concepts to  
solve problem 
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APPENDIX F 
 

WINSTEPS CODE 
 
 

&INST; 

TITLE= 'language 2012' 

NI=54; 

ITEM1= 2;     

DATA=lang2012.txt; 

IAFILE=TM2012.txt; 

CODES= 01;  

LCONV=0.0001; 

UDECIIM=5 

PTBIS=Y 

PVALUE=Y 

TOTALSCORE=Y 

IFILE=TMlang2012.itm; 

PFILE=TMlang2012.pfl 

&END ; 
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